ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriotavw Unicode version

Theorem cbvriotavw 5938
Description: Change bound variable in a restricted description binder. Version of cbvriotav 5940 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvriotavw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvriotavw  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvriotavw
StepHypRef Expression
1 eleq1w 2270 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvriotavw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
43cbviotavw 5260 . 2  |-  ( iota
x ( x  e.  A  /\  ph )
)  =  ( iota y ( y  e.  A  /\  ps )
)
5 df-riota 5927 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
6 df-riota 5927 . 2  |-  ( iota_ y  e.  A  ps )  =  ( iota y
( y  e.  A  /\  ps ) )
74, 5, 63eqtr4i 2240 1  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   iotacio 5252   iota_crio 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-uni 3868  df-iota 5254  df-riota 5927
This theorem is referenced by:  uspgredg2v  15984  usgredg2v  15987
  Copyright terms: Public domain W3C validator