| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgredg2v | Unicode version | ||
| Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgredg2v.v |
|
| usgredg2v.e |
|
| usgredg2v.a |
|
| usgredg2v.f |
|
| Ref | Expression |
|---|---|
| usgredg2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v |
. . . . 5
| |
| 2 | usgredg2v.e |
. . . . 5
| |
| 3 | usgredg2v.a |
. . . . 5
| |
| 4 | 1, 2, 3 | usgredg2vlem1 15985 |
. . . 4
|
| 5 | 4 | ralrimiva 2583 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | preq1 3723 |
. . . . . . . . . 10
| |
| 9 | 8 | eqeq2d 2221 |
. . . . . . . . 9
|
| 10 | 9 | cbvriotavw 5938 |
. . . . . . . 8
|
| 11 | 8 | eqeq2d 2221 |
. . . . . . . . 9
|
| 12 | 11 | cbvriotavw 5938 |
. . . . . . . 8
|
| 13 | 7, 10, 12 | 3eqtr4g 2267 |
. . . . . . 7
|
| 14 | eqid 2209 |
. . . . . . 7
| |
| 15 | 13, 14 | jctir 313 |
. . . . . 6
|
| 16 | 15 | orcd 737 |
. . . . 5
|
| 17 | simpl 109 |
. . . . . . . . . 10
| |
| 18 | simpl 109 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anim12i 338 |
. . . . . . . . 9
|
| 20 | 1, 2, 3 | usgredg2vlem2 15986 |
. . . . . . . . 9
|
| 21 | 19, 10, 20 | mpisyl 1469 |
. . . . . . . 8
|
| 22 | an3 589 |
. . . . . . . . 9
| |
| 23 | 1, 2, 3 | usgredg2vlem2 15986 |
. . . . . . . . 9
|
| 24 | 22, 12, 23 | mpisyl 1469 |
. . . . . . . 8
|
| 25 | 21, 24 | eqeq12d 2224 |
. . . . . . 7
|
| 26 | 2 | usgrf1 15938 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | elrabi 2936 |
. . . . . . . . . 10
| |
| 29 | 28, 3 | eleq2s 2304 |
. . . . . . . . 9
|
| 30 | elrabi 2936 |
. . . . . . . . . 10
| |
| 31 | 30, 3 | eleq2s 2304 |
. . . . . . . . 9
|
| 32 | 29, 31 | anim12i 338 |
. . . . . . . 8
|
| 33 | f1fveq 5869 |
. . . . . . . 8
| |
| 34 | 27, 32, 33 | syl2an 289 |
. . . . . . 7
|
| 35 | vtxex 15784 |
. . . . . . . . . . . 12
| |
| 36 | 1, 35 | eqeltrid 2296 |
. . . . . . . . . . 11
|
| 37 | riotaexg 5931 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | 38 | adantr 276 |
. . . . . . . . 9
|
| 40 | simpr 110 |
. . . . . . . . 9
| |
| 41 | riotaexg 5931 |
. . . . . . . . . . 11
| |
| 42 | 36, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | adantr 276 |
. . . . . . . . 9
|
| 44 | preq12bg 3830 |
. . . . . . . . 9
| |
| 45 | 39, 40, 43, 40, 44 | syl22anc 1253 |
. . . . . . . 8
|
| 46 | 45 | adantr 276 |
. . . . . . 7
|
| 47 | 25, 34, 46 | 3bitr3d 218 |
. . . . . 6
|
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | 16, 48 | mpbird 167 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | ralrimivva 2592 |
. 2
|
| 52 | usgredg2v.f |
. . 3
| |
| 53 | fveqeq2 5612 |
. . . 4
| |
| 54 | 53 | riotabidv 5929 |
. . 3
|
| 55 | 52, 54 | f1mpt 5868 |
. 2
|
| 56 | 6, 51, 55 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-edg 15824 df-umgren 15859 df-usgren 15919 |
| This theorem is referenced by: usgriedgdomord 15988 |
| Copyright terms: Public domain | W3C validator |