ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg2v Unicode version

Theorem usgredg2v 15987
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v  |-  V  =  (Vtx `  G )
usgredg2v.e  |-  E  =  (iEdg `  G )
usgredg2v.a  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
usgredg2v.f  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } ) )
Assertion
Ref Expression
usgredg2v  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Distinct variable groups:    x, E, z   
z, G    x, N, z    z, V    y, A    y, E, x, z    y, G    y, N    y, V
Allowed substitution hints:    A( x, z)    F( x, y, z)    G( x)    V( x)

Proof of Theorem usgredg2v
Dummy variables  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg2v.v . . . . 5  |-  V  =  (Vtx `  G )
2 usgredg2v.e . . . . 5  |-  E  =  (iEdg `  G )
3 usgredg2v.a . . . . 5  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
41, 2, 3usgredg2vlem1 15985 . . . 4  |-  ( ( G  e. USGraph  /\  y  e.  A )  ->  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  e.  V )
54ralrimiva 2583 . . 3  |-  ( G  e. USGraph  ->  A. y  e.  A  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  e.  V )
65adantr 276 . 2  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  A. y  e.  A  ( iota_ z  e.  V  ( E `
 y )  =  { z ,  N } )  e.  V
)
7 simpr 110 . . . . . . . 8  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  ( iota_ z  e.  V  ( E `  y )  =  {
z ,  N }
)  =  ( iota_ z  e.  V  ( E `
 w )  =  { z ,  N } ) )
8 preq1 3723 . . . . . . . . . 10  |-  ( u  =  z  ->  { u ,  N }  =  {
z ,  N }
)
98eqeq2d 2221 . . . . . . . . 9  |-  ( u  =  z  ->  (
( E `  y
)  =  { u ,  N }  <->  ( E `  y )  =  {
z ,  N }
) )
109cbvriotavw 5938 . . . . . . . 8  |-  ( iota_ u  e.  V  ( E `
 y )  =  { u ,  N } )  =  (
iota_ z  e.  V  ( E `  y )  =  { z ,  N } )
118eqeq2d 2221 . . . . . . . . 9  |-  ( u  =  z  ->  (
( E `  w
)  =  { u ,  N }  <->  ( E `  w )  =  {
z ,  N }
) )
1211cbvriotavw 5938 . . . . . . . 8  |-  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } )  =  (
iota_ z  e.  V  ( E `  w )  =  { z ,  N } )
137, 10, 123eqtr4g 2267 . . . . . . 7  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) )
14 eqid 2209 . . . . . . 7  |-  N  =  N
1513, 14jctir 313 . . . . . 6  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  ( ( iota_ u  e.  V  ( E `
 y )  =  { u ,  N } )  =  (
iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )
)
1615orcd 737 . . . . 5  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  ( ( (
iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )  \/  ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  N  /\  N  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) ) ) )
17 simpl 109 . . . . . . . . . 10  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  G  e. USGraph )
18 simpl 109 . . . . . . . . . 10  |-  ( ( y  e.  A  /\  w  e.  A )  ->  y  e.  A )
1917, 18anim12i 338 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( G  e. USGraph  /\  y  e.  A
) )
201, 2, 3usgredg2vlem2 15986 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  y  e.  A )  ->  (
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  -> 
( E `  y
)  =  { (
iota_ u  e.  V  ( E `  y )  =  { u ,  N } ) ,  N } ) )
2119, 10, 20mpisyl 1469 . . . . . . . 8  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( E `  y )  =  {
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } ) ,  N } )
22 an3 589 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( G  e. USGraph  /\  w  e.  A
) )
231, 2, 3usgredg2vlem2 15986 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  w  e.  A )  ->  (
( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } )  -> 
( E `  w
)  =  { (
iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ,  N } ) )
2422, 12, 23mpisyl 1469 . . . . . . . 8  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( E `  w )  =  {
( iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ,  N } )
2521, 24eqeq12d 2224 . . . . . . 7  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( ( E `  y )  =  ( E `  w )  <->  { ( iota_ u  e.  V  ( E `  y )  =  { u ,  N } ) ,  N }  =  {
( iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ,  N } ) )
262usgrf1 15938 . . . . . . . . 9  |-  ( G  e. USGraph  ->  E : dom  E
-1-1-> ran  E )
2726adantr 276 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  E : dom  E -1-1-> ran  E
)
28 elrabi 2936 . . . . . . . . . 10  |-  ( y  e.  { x  e. 
dom  E  |  N  e.  ( E `  x
) }  ->  y  e.  dom  E )
2928, 3eleq2s 2304 . . . . . . . . 9  |-  ( y  e.  A  ->  y  e.  dom  E )
30 elrabi 2936 . . . . . . . . . 10  |-  ( w  e.  { x  e. 
dom  E  |  N  e.  ( E `  x
) }  ->  w  e.  dom  E )
3130, 3eleq2s 2304 . . . . . . . . 9  |-  ( w  e.  A  ->  w  e.  dom  E )
3229, 31anim12i 338 . . . . . . . 8  |-  ( ( y  e.  A  /\  w  e.  A )  ->  ( y  e.  dom  E  /\  w  e.  dom  E ) )
33 f1fveq 5869 . . . . . . . 8  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ( y  e.  dom  E  /\  w  e.  dom  E ) )  ->  ( ( E `
 y )  =  ( E `  w
)  <->  y  =  w ) )
3427, 32, 33syl2an 289 . . . . . . 7  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( ( E `  y )  =  ( E `  w )  <->  y  =  w ) )
35 vtxex 15784 . . . . . . . . . . . 12  |-  ( G  e. USGraph  ->  (Vtx `  G
)  e.  _V )
361, 35eqeltrid 2296 . . . . . . . . . . 11  |-  ( G  e. USGraph  ->  V  e.  _V )
37 riotaexg 5931 . . . . . . . . . . 11  |-  ( V  e.  _V  ->  ( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  e. 
_V )
3836, 37syl 14 . . . . . . . . . 10  |-  ( G  e. USGraph  ->  ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  e.  _V )
3938adantr 276 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  e. 
_V )
40 simpr 110 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  N  e.  V )
41 riotaexg 5931 . . . . . . . . . . 11  |-  ( V  e.  _V  ->  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  e. 
_V )
4236, 41syl 14 . . . . . . . . . 10  |-  ( G  e. USGraph  ->  ( iota_ u  e.  V  ( E `  w )  =  {
u ,  N }
)  e.  _V )
4342adantr 276 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  e. 
_V )
44 preq12bg 3830 . . . . . . . . 9  |-  ( ( ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  e.  _V  /\  N  e.  V )  /\  ( ( iota_ u  e.  V  ( E `  w )  =  {
u ,  N }
)  e.  _V  /\  N  e.  V )
)  ->  ( {
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } ) ,  N }  =  {
( iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ,  N }  <->  ( (
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )  \/  ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  N  /\  N  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) ) ) ) )
4539, 40, 43, 40, 44syl22anc 1253 . . . . . . . 8  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( { ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
) ,  N }  =  { ( iota_ u  e.  V  ( E `  w )  =  {
u ,  N }
) ,  N }  <->  ( ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } )  /\  N  =  N )  \/  (
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  N  /\  N  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ) ) ) )
4645adantr 276 . . . . . . 7  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( {
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } ) ,  N }  =  {
( iota_ u  e.  V  ( E `  w )  =  { u ,  N } ) ,  N }  <->  ( (
( iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )  \/  ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  N  /\  N  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) ) ) ) )
4725, 34, 463bitr3d 218 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( y  =  w  <->  ( ( (
iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )  \/  ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  N  /\  N  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) ) ) ) )
4847adantr 276 . . . . 5  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  ( y  =  w  <->  ( ( (
iota_ u  e.  V  ( E `  y )  =  { u ,  N } )  =  ( iota_ u  e.  V  ( E `  w )  =  { u ,  N } )  /\  N  =  N )  \/  ( ( iota_ u  e.  V  ( E `  y )  =  {
u ,  N }
)  =  N  /\  N  =  ( iota_ u  e.  V  ( E `
 w )  =  { u ,  N } ) ) ) ) )
4916, 48mpbird 167 . . . 4  |-  ( ( ( ( G  e. USGraph  /\  N  e.  V
)  /\  ( y  e.  A  /\  w  e.  A ) )  /\  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )  ->  y  =  w )
5049ex 115 . . 3  |-  ( ( ( G  e. USGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  w  e.  A )
)  ->  ( ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } )  -> 
y  =  w ) )
5150ralrimivva 2592 . 2  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  A. y  e.  A  A. w  e.  A  ( ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } )  -> 
y  =  w ) )
52 usgredg2v.f . . 3  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } ) )
53 fveqeq2 5612 . . . 4  |-  ( y  =  w  ->  (
( E `  y
)  =  { z ,  N }  <->  ( E `  w )  =  {
z ,  N }
) )
5453riotabidv 5929 . . 3  |-  ( y  =  w  ->  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } ) )
5552, 54f1mpt 5868 . 2  |-  ( F : A -1-1-> V  <->  ( A. y  e.  A  ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  e.  V  /\  A. y  e.  A  A. w  e.  A  ( ( iota_ z  e.  V  ( E `  y )  =  { z ,  N } )  =  ( iota_ z  e.  V  ( E `  w )  =  { z ,  N } )  -> 
y  =  w ) ) )
566, 51, 55sylanbrc 417 1  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    = wceq 1375    e. wcel 2180   A.wral 2488   {crab 2492   _Vcvv 2779   {cpr 3647    |-> cmpt 4124   dom cdm 4696   ran crn 4697   -1-1->wf1 5291   ` cfv 5294   iota_crio 5926  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859  df-usgren 15919
This theorem is referenced by:  usgriedgdomord  15988
  Copyright terms: Public domain W3C validator