| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgredg2v | Unicode version | ||
| Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgredg2v.v |
|
| usgredg2v.e |
|
| usgredg2v.a |
|
| usgredg2v.f |
|
| Ref | Expression |
|---|---|
| usgredg2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v |
. . . . 5
| |
| 2 | usgredg2v.e |
. . . . 5
| |
| 3 | usgredg2v.a |
. . . . 5
| |
| 4 | 1, 2, 3 | usgredg2vlem1 16028 |
. . . 4
|
| 5 | 4 | ralrimiva 2603 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | preq1 3743 |
. . . . . . . . . 10
| |
| 9 | 8 | eqeq2d 2241 |
. . . . . . . . 9
|
| 10 | 9 | cbvriotavw 5971 |
. . . . . . . 8
|
| 11 | 8 | eqeq2d 2241 |
. . . . . . . . 9
|
| 12 | 11 | cbvriotavw 5971 |
. . . . . . . 8
|
| 13 | 7, 10, 12 | 3eqtr4g 2287 |
. . . . . . 7
|
| 14 | eqid 2229 |
. . . . . . 7
| |
| 15 | 13, 14 | jctir 313 |
. . . . . 6
|
| 16 | 15 | orcd 738 |
. . . . 5
|
| 17 | simpl 109 |
. . . . . . . . . 10
| |
| 18 | simpl 109 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anim12i 338 |
. . . . . . . . 9
|
| 20 | 1, 2, 3 | usgredg2vlem2 16029 |
. . . . . . . . 9
|
| 21 | 19, 10, 20 | mpisyl 1489 |
. . . . . . . 8
|
| 22 | an3 589 |
. . . . . . . . 9
| |
| 23 | 1, 2, 3 | usgredg2vlem2 16029 |
. . . . . . . . 9
|
| 24 | 22, 12, 23 | mpisyl 1489 |
. . . . . . . 8
|
| 25 | 21, 24 | eqeq12d 2244 |
. . . . . . 7
|
| 26 | 2 | usgrf1 15981 |
. . . . . . . . 9
|
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | elrabi 2956 |
. . . . . . . . . 10
| |
| 29 | 28, 3 | eleq2s 2324 |
. . . . . . . . 9
|
| 30 | elrabi 2956 |
. . . . . . . . . 10
| |
| 31 | 30, 3 | eleq2s 2324 |
. . . . . . . . 9
|
| 32 | 29, 31 | anim12i 338 |
. . . . . . . 8
|
| 33 | f1fveq 5902 |
. . . . . . . 8
| |
| 34 | 27, 32, 33 | syl2an 289 |
. . . . . . 7
|
| 35 | vtxex 15827 |
. . . . . . . . . . . 12
| |
| 36 | 1, 35 | eqeltrid 2316 |
. . . . . . . . . . 11
|
| 37 | riotaexg 5964 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | 38 | adantr 276 |
. . . . . . . . 9
|
| 40 | simpr 110 |
. . . . . . . . 9
| |
| 41 | riotaexg 5964 |
. . . . . . . . . . 11
| |
| 42 | 36, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | adantr 276 |
. . . . . . . . 9
|
| 44 | preq12bg 3851 |
. . . . . . . . 9
| |
| 45 | 39, 40, 43, 40, 44 | syl22anc 1272 |
. . . . . . . 8
|
| 46 | 45 | adantr 276 |
. . . . . . 7
|
| 47 | 25, 34, 46 | 3bitr3d 218 |
. . . . . 6
|
| 48 | 47 | adantr 276 |
. . . . 5
|
| 49 | 16, 48 | mpbird 167 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | ralrimivva 2612 |
. 2
|
| 52 | usgredg2v.f |
. . 3
| |
| 53 | fveqeq2 5638 |
. . . 4
| |
| 54 | 53 | riotabidv 5962 |
. . 3
|
| 55 | 52, 54 | f1mpt 5901 |
. 2
|
| 56 | 6, 51, 55 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-edg 15867 df-umgren 15902 df-usgren 15962 |
| This theorem is referenced by: usgriedgdomord 16031 |
| Copyright terms: Public domain | W3C validator |