ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriotavw GIF version

Theorem cbvriotavw 5971
Description: Change bound variable in a restricted description binder. Version of cbvriotav 5973 with a disjoint variable condition. (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbvriotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavw (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotavw
StepHypRef Expression
1 eleq1w 2290 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvriotavw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2anbi12d 473 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
43cbviotavw 5284 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐴𝜓))
5 df-riota 5960 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
6 df-riota 5960 . 2 (𝑦𝐴 𝜓) = (℩𝑦(𝑦𝐴𝜓))
74, 5, 63eqtr4i 2260 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cio 5276  crio 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278  df-riota 5960
This theorem is referenced by:  uspgredg2v  16027  usgredg2v  16030
  Copyright terms: Public domain W3C validator