ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgredg2v Unicode version

Theorem uspgredg2v 16027
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v  |-  V  =  (Vtx `  G )
uspgredg2v.e  |-  E  =  (Edg `  G )
uspgredg2v.a  |-  A  =  { e  e.  E  |  N  e.  e }
uspgredg2v.f  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  y  =  { N ,  z } ) )
Assertion
Ref Expression
uspgredg2v  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Distinct variable groups:    e, E    z, G    e, N    z, N    z, V    y, A    y, G    y, N, z    y, V    y, e
Allowed substitution hints:    A( z, e)    E( y, z)    F( y, z, e)    G( e)    V( e)

Proof of Theorem uspgredg2v
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5  |-  V  =  (Vtx `  G )
2 uspgredg2v.e . . . . 5  |-  E  =  (Edg `  G )
3 uspgredg2v.a . . . . 5  |-  A  =  { e  e.  E  |  N  e.  e }
41, 2, 3uspgredg2vlem 16026 . . . 4  |-  ( ( G  e. USPGraph  /\  y  e.  A )  ->  ( iota_ z  e.  V  y  =  { N , 
z } )  e.  V )
54ralrimiva 2603 . . 3  |-  ( G  e. USPGraph  ->  A. y  e.  A  ( iota_ z  e.  V  y  =  { N ,  z } )  e.  V )
65adantr 276 . 2  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  A. y  e.  A  ( iota_ z  e.  V  y  =  { N ,  z } )  e.  V
)
7 preq2 3744 . . . . . . 7  |-  ( z  =  n  ->  { N ,  z }  =  { N ,  n }
)
87eqeq2d 2241 . . . . . 6  |-  ( z  =  n  ->  (
y  =  { N ,  z }  <->  y  =  { N ,  n }
) )
98cbvriotavw 5971 . . . . 5  |-  ( iota_ z  e.  V  y  =  { N ,  z } )  =  (
iota_ n  e.  V  y  =  { N ,  n } )
107eqeq2d 2241 . . . . . 6  |-  ( z  =  n  ->  (
x  =  { N ,  z }  <->  x  =  { N ,  n }
) )
1110cbvriotavw 5971 . . . . 5  |-  ( iota_ z  e.  V  x  =  { N ,  z } )  =  (
iota_ n  e.  V  x  =  { N ,  n } )
12 simpl 109 . . . . . . . 8  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  G  e. USPGraph )
13 eleq2w 2291 . . . . . . . . . . 11  |-  ( e  =  y  ->  ( N  e.  e  <->  N  e.  y ) )
1413, 3elrab2 2962 . . . . . . . . . 10  |-  ( y  e.  A  <->  ( y  e.  E  /\  N  e.  y ) )
152eleq2i 2296 . . . . . . . . . . . 12  |-  ( y  e.  E  <->  y  e.  (Edg `  G ) )
1615biimpi 120 . . . . . . . . . . 11  |-  ( y  e.  E  ->  y  e.  (Edg `  G )
)
1716anim1i 340 . . . . . . . . . 10  |-  ( ( y  e.  E  /\  N  e.  y )  ->  ( y  e.  (Edg
`  G )  /\  N  e.  y )
)
1814, 17sylbi 121 . . . . . . . . 9  |-  ( y  e.  A  ->  (
y  e.  (Edg `  G )  /\  N  e.  y ) )
1918adantr 276 . . . . . . . 8  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y  e.  (Edg
`  G )  /\  N  e.  y )
)
2012, 19anim12i 338 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  ( y  e.  (Edg `  G )  /\  N  e.  y
) ) )
21 3anass 1006 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  <->  ( G  e. USPGraph  /\  ( y  e.  (Edg
`  G )  /\  N  e.  y )
) )
2220, 21sylibr 134 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  y  e.  (Edg
`  G )  /\  N  e.  y )
)
23 uspgredg2vtxeu 16024 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  ->  E! n  e.  (Vtx `  G )
y  =  { N ,  n } )
24 reueq1 2730 . . . . . . . 8  |-  ( V  =  (Vtx `  G
)  ->  ( E! n  e.  V  y  =  { N ,  n } 
<->  E! n  e.  (Vtx
`  G ) y  =  { N ,  n } ) )
251, 24ax-mp 5 . . . . . . 7  |-  ( E! n  e.  V  y  =  { N ,  n }  <->  E! n  e.  (Vtx
`  G ) y  =  { N ,  n } )
2623, 25sylibr 134 . . . . . 6  |-  ( ( G  e. USPGraph  /\  y  e.  (Edg `  G )  /\  N  e.  y
)  ->  E! n  e.  V  y  =  { N ,  n }
)
2722, 26syl 14 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  E! n  e.  V  y  =  { N ,  n }
)
28 eleq2w 2291 . . . . . . . . . . 11  |-  ( e  =  x  ->  ( N  e.  e  <->  N  e.  x ) )
2928, 3elrab2 2962 . . . . . . . . . 10  |-  ( x  e.  A  <->  ( x  e.  E  /\  N  e.  x ) )
302eleq2i 2296 . . . . . . . . . . . 12  |-  ( x  e.  E  <->  x  e.  (Edg `  G ) )
3130biimpi 120 . . . . . . . . . . 11  |-  ( x  e.  E  ->  x  e.  (Edg `  G )
)
3231anim1i 340 . . . . . . . . . 10  |-  ( ( x  e.  E  /\  N  e.  x )  ->  ( x  e.  (Edg
`  G )  /\  N  e.  x )
)
3329, 32sylbi 121 . . . . . . . . 9  |-  ( x  e.  A  ->  (
x  e.  (Edg `  G )  /\  N  e.  x ) )
3433adantl 277 . . . . . . . 8  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( x  e.  (Edg
`  G )  /\  N  e.  x )
)
3512, 34anim12i 338 . . . . . . 7  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  ( x  e.  (Edg `  G )  /\  N  e.  x
) ) )
36 3anass 1006 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  <->  ( G  e. USPGraph  /\  ( x  e.  (Edg
`  G )  /\  N  e.  x )
) )
3735, 36sylibr 134 . . . . . 6  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( G  e. USPGraph 
/\  x  e.  (Edg
`  G )  /\  N  e.  x )
)
38 uspgredg2vtxeu 16024 . . . . . . 7  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  ->  E! n  e.  (Vtx `  G )
x  =  { N ,  n } )
39 reueq1 2730 . . . . . . . 8  |-  ( V  =  (Vtx `  G
)  ->  ( E! n  e.  V  x  =  { N ,  n } 
<->  E! n  e.  (Vtx
`  G ) x  =  { N ,  n } ) )
401, 39ax-mp 5 . . . . . . 7  |-  ( E! n  e.  V  x  =  { N ,  n }  <->  E! n  e.  (Vtx
`  G ) x  =  { N ,  n } )
4138, 40sylibr 134 . . . . . 6  |-  ( ( G  e. USPGraph  /\  x  e.  (Edg `  G )  /\  N  e.  x
)  ->  E! n  e.  V  x  =  { N ,  n }
)
4237, 41syl 14 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  E! n  e.  V  x  =  { N ,  n }
)
439, 11, 27, 42riotaeqimp 5985 . . . 4  |-  ( ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  ( y  e.  A  /\  x  e.  A ) )  /\  ( iota_ z  e.  V  y  =  { N ,  z } )  =  ( iota_ z  e.  V  x  =  { N ,  z }
) )  ->  y  =  x )
4443ex 115 . . 3  |-  ( ( ( G  e. USPGraph  /\  N  e.  V )  /\  (
y  e.  A  /\  x  e.  A )
)  ->  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) )
4544ralrimivva 2612 . 2  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  A. y  e.  A  A. x  e.  A  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) )
46 uspgredg2v.f . . 3  |-  F  =  ( y  e.  A  |->  ( iota_ z  e.  V  y  =  { N ,  z } ) )
47 eqeq1 2236 . . . 4  |-  ( y  =  x  ->  (
y  =  { N ,  z }  <->  x  =  { N ,  z } ) )
4847riotabidv 5962 . . 3  |-  ( y  =  x  ->  ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } ) )
4946, 48f1mpt 5901 . 2  |-  ( F : A -1-1-> V  <->  ( A. y  e.  A  ( iota_ z  e.  V  y  =  { N , 
z } )  e.  V  /\  A. y  e.  A  A. x  e.  A  ( ( iota_ z  e.  V  y  =  { N , 
z } )  =  ( iota_ z  e.  V  x  =  { N ,  z } )  ->  y  =  x ) ) )
506, 45, 49sylanbrc 417 1  |-  ( ( G  e. USPGraph  /\  N  e.  V )  ->  F : A -1-1-> V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E!wreu 2510   {crab 2512   {cpr 3667    |-> cmpt 4145   -1-1->wf1 5315   ` cfv 5318   iota_crio 5959  Vtxcvtx 15821  Edgcedg 15866  USPGraphcuspgr 15959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-upgren 15901  df-uspgren 15961
This theorem is referenced by:  uspgredgdomord  16035
  Copyright terms: Public domain W3C validator