Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coeq1i | GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 4761 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∘ ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-br 3983 df-opab 4044 df-co 4613 |
This theorem is referenced by: coeq12i 4767 cocnvcnv1 5114 upxp 12912 uptx 12914 |
Copyright terms: Public domain | W3C validator |