ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq1 Unicode version

Theorem coeq1 4853
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
Assertion
Ref Expression
coeq1  |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )

Proof of Theorem coeq1
StepHypRef Expression
1 coss1 4851 . . 3  |-  ( A 
C_  B  ->  ( A  o.  C )  C_  ( B  o.  C
) )
2 coss1 4851 . . 3  |-  ( B 
C_  A  ->  ( B  o.  C )  C_  ( A  o.  C
) )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( ( A  o.  C )  C_  ( B  o.  C )  /\  ( B  o.  C
)  C_  ( A  o.  C ) ) )
4 eqss 3216 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3216 . 2  |-  ( ( A  o.  C )  =  ( B  o.  C )  <->  ( ( A  o.  C )  C_  ( B  o.  C
)  /\  ( B  o.  C )  C_  ( A  o.  C )
) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3174    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-co 4702
This theorem is referenced by:  coeq1i  4855  coeq1d  4857  coi2  5218  relcnvtr  5221  funcoeqres  5575  ereq1  6650  updjud  7210  seqf1oglem2  10702  seqf1og  10703
  Copyright terms: Public domain W3C validator