| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coeq1 | Unicode version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1 4833 |
. . 3
| |
| 2 | coss1 4833 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3208 |
. 2
| |
| 5 | eqss 3208 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4045 df-opab 4106 df-co 4684 |
| This theorem is referenced by: coeq1i 4837 coeq1d 4839 coi2 5199 relcnvtr 5202 funcoeqres 5553 ereq1 6627 updjud 7184 seqf1oglem2 10665 seqf1og 10666 |
| Copyright terms: Public domain | W3C validator |