ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv1 Unicode version

Theorem cocnvcnv1 5114
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 5057 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21coeq1i 4763 . 2  |-  ( `' `' A  o.  B
)  =  ( ( A  |`  _V )  o.  B )
3 ssv 3164 . . 3  |-  ran  B  C_ 
_V
4 cores 5107 . . 3  |-  ( ran 
B  C_  _V  ->  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B ) )
53, 4ax-mp 5 . 2  |-  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B )
62, 5eqtri 2186 1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   _Vcvv 2726    C_ wss 3116   `'ccnv 4603   ran crn 4605    |` cres 4606    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by:  cores2  5116  coires1  5121  cofunex2g  6078
  Copyright terms: Public domain W3C validator