ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv1 Unicode version

Theorem cocnvcnv1 5131
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 5074 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21coeq1i 4779 . 2  |-  ( `' `' A  o.  B
)  =  ( ( A  |`  _V )  o.  B )
3 ssv 3175 . . 3  |-  ran  B  C_ 
_V
4 cores 5124 . . 3  |-  ( ran 
B  C_  _V  ->  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B ) )
53, 4ax-mp 5 . 2  |-  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B )
62, 5eqtri 2196 1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2735    C_ wss 3127   `'ccnv 4619   ran crn 4621    |` cres 4622    o. ccom 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632
This theorem is referenced by:  cores2  5133  coires1  5138  cofunex2g  6101
  Copyright terms: Public domain W3C validator