ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv1 Unicode version

Theorem cocnvcnv1 5212
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 5155 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21coeq1i 4855 . 2  |-  ( `' `' A  o.  B
)  =  ( ( A  |`  _V )  o.  B )
3 ssv 3223 . . 3  |-  ran  B  C_ 
_V
4 cores 5205 . . 3  |-  ( ran 
B  C_  _V  ->  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B ) )
53, 4ax-mp 5 . 2  |-  ( ( A  |`  _V )  o.  B )  =  ( A  o.  B )
62, 5eqtri 2228 1  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2776    C_ wss 3174   `'ccnv 4692   ran crn 4694    |` cres 4695    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705
This theorem is referenced by:  cores2  5214  coires1  5219  cofunex2g  6218
  Copyright terms: Public domain W3C validator