ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres Unicode version

Theorem cocnvres 5208
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4984 . . . 4  |-  ( S  |`  dom  R )  C_  S
2 dmss 4878 . . . 4  |-  ( ( S  |`  dom  R ) 
C_  S  ->  dom  ( S  |`  dom  R
)  C_  dom  S )
31, 2ax-mp 5 . . 3  |-  dom  ( S  |`  dom  R ) 
C_  dom  S
4 cores2 5196 . . 3  |-  ( dom  ( S  |`  dom  R
)  C_  dom  S  -> 
( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
) )
53, 4ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
)
6 rescnvcnv 5146 . . . 4  |-  ( `' `' R  |`  dom  S
)  =  ( R  |`  dom  S )
76cnveqi 4854 . . 3  |-  `' ( `' `' R  |`  dom  S
)  =  `' ( R  |`  dom  S )
87coeq2i 4839 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' ( R  |`  dom  S ) )
9 dfdm4 4871 . . . 4  |-  dom  R  =  ran  `' R
109eqimss2i 3250 . . 3  |-  ran  `' R  C_  dom  R
11 cores 5187 . . 3  |-  ( ran  `' R  C_  dom  R  ->  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R
) )
1210, 11ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R )
135, 8, 123eqtr3ri 2235 1  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166   `'ccnv 4675   dom cdm 4676   ran crn 4677    |` cres 4678    o. ccom 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688
This theorem is referenced by:  cocnvss  5209
  Copyright terms: Public domain W3C validator