ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres Unicode version

Theorem cocnvres 5253
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 5029 . . . 4  |-  ( S  |`  dom  R )  C_  S
2 dmss 4922 . . . 4  |-  ( ( S  |`  dom  R ) 
C_  S  ->  dom  ( S  |`  dom  R
)  C_  dom  S )
31, 2ax-mp 5 . . 3  |-  dom  ( S  |`  dom  R ) 
C_  dom  S
4 cores2 5241 . . 3  |-  ( dom  ( S  |`  dom  R
)  C_  dom  S  -> 
( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
) )
53, 4ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
)
6 rescnvcnv 5191 . . . 4  |-  ( `' `' R  |`  dom  S
)  =  ( R  |`  dom  S )
76cnveqi 4897 . . 3  |-  `' ( `' `' R  |`  dom  S
)  =  `' ( R  |`  dom  S )
87coeq2i 4882 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' ( R  |`  dom  S ) )
9 dfdm4 4915 . . . 4  |-  dom  R  =  ran  `' R
109eqimss2i 3281 . . 3  |-  ran  `' R  C_  dom  R
11 cores 5232 . . 3  |-  ( ran  `' R  C_  dom  R  ->  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R
) )
1210, 11ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R )
135, 8, 123eqtr3ri 2259 1  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731
This theorem is referenced by:  cocnvss  5254
  Copyright terms: Public domain W3C validator