ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvres Unicode version

Theorem cocnvres 5194
Description: Restricting a relation and a converse relation when they are composed together. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvres  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )

Proof of Theorem cocnvres
StepHypRef Expression
1 resss 4970 . . . 4  |-  ( S  |`  dom  R )  C_  S
2 dmss 4865 . . . 4  |-  ( ( S  |`  dom  R ) 
C_  S  ->  dom  ( S  |`  dom  R
)  C_  dom  S )
31, 2ax-mp 5 . . 3  |-  dom  ( S  |`  dom  R ) 
C_  dom  S
4 cores2 5182 . . 3  |-  ( dom  ( S  |`  dom  R
)  C_  dom  S  -> 
( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
) )
53, 4ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' R
)
6 rescnvcnv 5132 . . . 4  |-  ( `' `' R  |`  dom  S
)  =  ( R  |`  dom  S )
76cnveqi 4841 . . 3  |-  `' ( `' `' R  |`  dom  S
)  =  `' ( R  |`  dom  S )
87coeq2i 4826 . 2  |-  ( ( S  |`  dom  R )  o.  `' ( `' `' R  |`  dom  S
) )  =  ( ( S  |`  dom  R
)  o.  `' ( R  |`  dom  S ) )
9 dfdm4 4858 . . . 4  |-  dom  R  =  ran  `' R
109eqimss2i 3240 . . 3  |-  ran  `' R  C_  dom  R
11 cores 5173 . . 3  |-  ( ran  `' R  C_  dom  R  ->  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R
) )
1210, 11ax-mp 5 . 2  |-  ( ( S  |`  dom  R )  o.  `' R )  =  ( S  o.  `' R )
135, 8, 123eqtr3ri 2226 1  |-  ( S  o.  `' R )  =  ( ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3157   `'ccnv 4662   dom cdm 4663   ran crn 4664    |` cres 4665    o. ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675
This theorem is referenced by:  cocnvss  5195
  Copyright terms: Public domain W3C validator