ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos2 Unicode version

Theorem dftpos2 6360
Description: Alternate definition of tpos when  F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Distinct variable group:    x, F

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 6355 . . 3  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
21reseq2d 4968 . 2  |-  ( Rel 
dom  F  ->  (tpos  F  |` 
dom tpos  F )  =  (tpos 
F  |`  `' dom  F
) )
3 reltpos 6349 . . 3  |-  Rel tpos  F
4 resdm 5007 . . 3  |-  ( Rel tpos  F  ->  (tpos  F  |`  dom tpos  F )  = tpos  F
)
53, 4ax-mp 5 . 2  |-  (tpos  F  |` 
dom tpos  F )  = tpos  F
6 df-tpos 6344 . . . 4  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
76reseq1i 4964 . . 3  |-  (tpos  F  |`  `' dom  F )  =  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  |`  `' dom  F )
8 resco 5196 . . 3  |-  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) )  |`  `' dom  F )  =  ( F  o.  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F ) )
9 ssun1 3340 . . . . 5  |-  `' dom  F 
C_  ( `' dom  F  u.  { (/) } )
10 resmpt 5016 . . . . 5  |-  ( `' dom  F  C_  ( `' dom  F  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } ) )
119, 10ax-mp 5 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } )
1211coeq2i 4846 . . 3  |-  ( F  o.  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  |`  `' dom  F ) )  =  ( F  o.  ( x  e.  `' dom  F  |-> 
U. `' { x } ) )
137, 8, 123eqtri 2231 . 2  |-  (tpos  F  |`  `' dom  F )  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) )
142, 5, 133eqtr3g 2262 1  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3168    C_ wss 3170   (/)c0 3464   {csn 3638   U.cuni 3856    |-> cmpt 4113   `'ccnv 4682   dom cdm 4683    |` cres 4685    o. ccom 4687   Rel wrel 4688  tpos ctpos 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-tpos 6344
This theorem is referenced by:  tposf12  6368
  Copyright terms: Public domain W3C validator