Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftpos2 | Unicode version |
Description: Alternate definition of tpos when has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos2 | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmtpos 6224 | . . 3 tpos | |
2 | 1 | reseq2d 4884 | . 2 tpos tpos tpos |
3 | reltpos 6218 | . . 3 tpos | |
4 | resdm 4923 | . . 3 tpos tpos tpos tpos | |
5 | 3, 4 | ax-mp 5 | . 2 tpos tpos tpos |
6 | df-tpos 6213 | . . . 4 tpos | |
7 | 6 | reseq1i 4880 | . . 3 tpos |
8 | resco 5108 | . . 3 | |
9 | ssun1 3285 | . . . . 5 | |
10 | resmpt 4932 | . . . . 5 | |
11 | 9, 10 | ax-mp 5 | . . . 4 |
12 | 11 | coeq2i 4764 | . . 3 |
13 | 7, 8, 12 | 3eqtri 2190 | . 2 tpos |
14 | 2, 5, 13 | 3eqtr3g 2222 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cun 3114 wss 3116 c0 3409 csn 3576 cuni 3789 cmpt 4043 ccnv 4603 cdm 4604 cres 4606 ccom 4608 wrel 4609 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: tposf12 6237 |
Copyright terms: Public domain | W3C validator |