ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos2 Unicode version

Theorem dftpos2 6287
Description: Alternate definition of tpos when  F has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Distinct variable group:    x, F

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 6282 . . 3  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
21reseq2d 4925 . 2  |-  ( Rel 
dom  F  ->  (tpos  F  |` 
dom tpos  F )  =  (tpos 
F  |`  `' dom  F
) )
3 reltpos 6276 . . 3  |-  Rel tpos  F
4 resdm 4964 . . 3  |-  ( Rel tpos  F  ->  (tpos  F  |`  dom tpos  F )  = tpos  F
)
53, 4ax-mp 5 . 2  |-  (tpos  F  |` 
dom tpos  F )  = tpos  F
6 df-tpos 6271 . . . 4  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
76reseq1i 4921 . . 3  |-  (tpos  F  |`  `' dom  F )  =  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  |`  `' dom  F )
8 resco 5151 . . 3  |-  ( ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } ) )  |`  `' dom  F )  =  ( F  o.  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F ) )
9 ssun1 3313 . . . . 5  |-  `' dom  F 
C_  ( `' dom  F  u.  { (/) } )
10 resmpt 4973 . . . . 5  |-  ( `' dom  F  C_  ( `' dom  F  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } ) )
119, 10ax-mp 5 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  |`  `' dom  F )  =  ( x  e.  `' dom  F  |->  U. `' { x } )
1211coeq2i 4805 . . 3  |-  ( F  o.  ( ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  |`  `' dom  F ) )  =  ( F  o.  ( x  e.  `' dom  F  |-> 
U. `' { x } ) )
137, 8, 123eqtri 2214 . 2  |-  (tpos  F  |`  `' dom  F )  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) )
142, 5, 133eqtr3g 2245 1  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3142    C_ wss 3144   (/)c0 3437   {csn 3607   U.cuni 3824    |-> cmpt 4079   `'ccnv 4643   dom cdm 4644    |` cres 4646    o. ccom 4648   Rel wrel 4649  tpos ctpos 6270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-tpos 6271
This theorem is referenced by:  tposf12  6295
  Copyright terms: Public domain W3C validator