ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 Unicode version

Theorem co01 5155
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5044 . . . 4  |-  `' (/)  =  (/)
2 cnvco 4824 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 4799 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5154 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2212 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2211 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 4814 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 4763 . . 3  |-  Rel  (/)
9 dfrel2 5091 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 145 . 2  |-  `' `' (/)  =  (/)
11 relco 5139 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5091 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 145 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2217 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1363   (/)c0 3434   `'ccnv 4637    o. ccom 4642   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator