ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 Unicode version

Theorem co01 5118
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5007 . . . 4  |-  `' (/)  =  (/)
2 cnvco 4789 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 4764 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5117 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2190 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2189 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 4779 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 4729 . . 3  |-  Rel  (/)
9 dfrel2 5054 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 144 . 2  |-  `' `' (/)  =  (/)
11 relco 5102 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5054 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 144 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2195 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1343   (/)c0 3409   `'ccnv 4603    o. ccom 4608   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator