ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 Unicode version

Theorem co01 5197
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5086 . . . 4  |-  `' (/)  =  (/)
2 cnvco 4863 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 4838 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5196 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2230 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2229 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 4853 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 4800 . . 3  |-  Rel  (/)
9 dfrel2 5133 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 145 . 2  |-  `' `' (/)  =  (/)
11 relco 5181 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5133 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 145 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2235 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   (/)c0 3460   `'ccnv 4674    o. ccom 4679   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator