ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 Unicode version

Theorem co01 5243
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5132 . . . 4  |-  `' (/)  =  (/)
2 cnvco 4907 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 4882 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5242 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2254 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2253 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 4897 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 4844 . . 3  |-  Rel  (/)
9 dfrel2 5179 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 145 . 2  |-  `' `' (/)  =  (/)
11 relco 5227 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5179 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 145 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2259 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395   (/)c0 3491   `'ccnv 4718    o. ccom 4723   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator