ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  co01 Unicode version

Theorem co01 5181
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co01  |-  ( (/)  o.  A )  =  (/)

Proof of Theorem co01
StepHypRef Expression
1 cnv0 5070 . . . 4  |-  `' (/)  =  (/)
2 cnvco 4848 . . . . 5  |-  `' (
(/)  o.  A )  =  ( `' A  o.  `' (/) )
31coeq2i 4823 . . . . 5  |-  ( `' A  o.  `' (/) )  =  ( `' A  o.  (/) )
4 co02 5180 . . . . 5  |-  ( `' A  o.  (/) )  =  (/)
52, 3, 43eqtri 2218 . . . 4  |-  `' (
(/)  o.  A )  =  (/)
61, 5eqtr4i 2217 . . 3  |-  `' (/)  =  `' ( (/)  o.  A
)
76cnveqi 4838 . 2  |-  `' `' (/)  =  `' `' (
(/)  o.  A )
8 rel0 4785 . . 3  |-  Rel  (/)
9 dfrel2 5117 . . 3  |-  ( Rel  (/) 
<->  `' `' (/)  =  (/) )
108, 9mpbi 145 . 2  |-  `' `' (/)  =  (/)
11 relco 5165 . . 3  |-  Rel  ( (/) 
o.  A )
12 dfrel2 5117 . . 3  |-  ( Rel  ( (/)  o.  A
)  <->  `' `' ( (/)  o.  A
)  =  ( (/)  o.  A ) )
1311, 12mpbi 145 . 2  |-  `' `' ( (/)  o.  A )  =  ( (/)  o.  A
)
147, 10, 133eqtr3ri 2223 1  |-  ( (/)  o.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3447   `'ccnv 4659    o. ccom 4664   Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator