ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi1 Unicode version

Theorem fcoi1 5239
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 5208 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 df-fn 5062 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
3 eqimss 3101 . . . . 5  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
4 cnvi 4879 . . . . . . . . . 10  |-  `'  _I  =  _I
54reseq1i 4751 . . . . . . . . 9  |-  ( `'  _I  |`  A )  =  (  _I  |`  A )
65cnveqi 4652 . . . . . . . 8  |-  `' ( `'  _I  |`  A )  =  `' (  _I  |`  A )
7 cnvresid 5133 . . . . . . . 8  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
86, 7eqtr2i 2121 . . . . . . 7  |-  (  _I  |`  A )  =  `' ( `'  _I  |`  A )
98coeq2i 4637 . . . . . 6  |-  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  `' ( `'  _I  |`  A )
)
10 cores2 4987 . . . . . 6  |-  ( dom 
F  C_  A  ->  ( F  o.  `' ( `'  _I  |`  A )
)  =  ( F  o.  _I  ) )
119, 10syl5eq 2144 . . . . 5  |-  ( dom 
F  C_  A  ->  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
123, 11syl 14 . . . 4  |-  ( dom 
F  =  A  -> 
( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
13 funrel 5076 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
14 coi1 4990 . . . . 5  |-  ( Rel 
F  ->  ( F  o.  _I  )  =  F )
1513, 14syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  o.  _I  )  =  F )
1612, 15sylan9eqr 2154 . . 3  |-  ( ( Fun  F  /\  dom  F  =  A )  -> 
( F  o.  (  _I  |`  A ) )  =  F )
172, 16sylbi 120 . 2  |-  ( F  Fn  A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
181, 17syl 14 1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    C_ wss 3021    _I cid 4148   `'ccnv 4476   dom cdm 4477    |` cres 4479    o. ccom 4481   Rel wrel 4482   Fun wfun 5053    Fn wfn 5054   -->wf 5055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-fun 5061  df-fn 5062  df-f 5063
This theorem is referenced by:  fcof1o  5622  mapen  6669  hashfacen  10420
  Copyright terms: Public domain W3C validator