ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi1 Unicode version

Theorem fcoi1 5506
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 5473 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 df-fn 5321 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
3 eqimss 3278 . . . . 5  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
4 cnvi 5133 . . . . . . . . . 10  |-  `'  _I  =  _I
54reseq1i 5001 . . . . . . . . 9  |-  ( `'  _I  |`  A )  =  (  _I  |`  A )
65cnveqi 4897 . . . . . . . 8  |-  `' ( `'  _I  |`  A )  =  `' (  _I  |`  A )
7 cnvresid 5395 . . . . . . . 8  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
86, 7eqtr2i 2251 . . . . . . 7  |-  (  _I  |`  A )  =  `' ( `'  _I  |`  A )
98coeq2i 4882 . . . . . 6  |-  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  `' ( `'  _I  |`  A )
)
10 cores2 5241 . . . . . 6  |-  ( dom 
F  C_  A  ->  ( F  o.  `' ( `'  _I  |`  A )
)  =  ( F  o.  _I  ) )
119, 10eqtrid 2274 . . . . 5  |-  ( dom 
F  C_  A  ->  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
123, 11syl 14 . . . 4  |-  ( dom 
F  =  A  -> 
( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
13 funrel 5335 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
14 coi1 5244 . . . . 5  |-  ( Rel 
F  ->  ( F  o.  _I  )  =  F )
1513, 14syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  o.  _I  )  =  F )
1612, 15sylan9eqr 2284 . . 3  |-  ( ( Fun  F  /\  dom  F  =  A )  -> 
( F  o.  (  _I  |`  A ) )  =  F )
172, 16sylbi 121 . 2  |-  ( F  Fn  A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
181, 17syl 14 1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    C_ wss 3197    _I cid 4379   `'ccnv 4718   dom cdm 4719    |` cres 4721    o. ccom 4723   Rel wrel 4724   Fun wfun 5312    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  fcof1o  5913  mapen  7007  hashfacen  11058
  Copyright terms: Public domain W3C validator