ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi1 Unicode version

Theorem fcoi1 5378
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 5347 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 df-fn 5201 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
3 eqimss 3201 . . . . 5  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
4 cnvi 5015 . . . . . . . . . 10  |-  `'  _I  =  _I
54reseq1i 4887 . . . . . . . . 9  |-  ( `'  _I  |`  A )  =  (  _I  |`  A )
65cnveqi 4786 . . . . . . . 8  |-  `' ( `'  _I  |`  A )  =  `' (  _I  |`  A )
7 cnvresid 5272 . . . . . . . 8  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
86, 7eqtr2i 2192 . . . . . . 7  |-  (  _I  |`  A )  =  `' ( `'  _I  |`  A )
98coeq2i 4771 . . . . . 6  |-  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  `' ( `'  _I  |`  A )
)
10 cores2 5123 . . . . . 6  |-  ( dom 
F  C_  A  ->  ( F  o.  `' ( `'  _I  |`  A )
)  =  ( F  o.  _I  ) )
119, 10eqtrid 2215 . . . . 5  |-  ( dom 
F  C_  A  ->  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
123, 11syl 14 . . . 4  |-  ( dom 
F  =  A  -> 
( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
13 funrel 5215 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
14 coi1 5126 . . . . 5  |-  ( Rel 
F  ->  ( F  o.  _I  )  =  F )
1513, 14syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  o.  _I  )  =  F )
1612, 15sylan9eqr 2225 . . 3  |-  ( ( Fun  F  /\  dom  F  =  A )  -> 
( F  o.  (  _I  |`  A ) )  =  F )
172, 16sylbi 120 . 2  |-  ( F  Fn  A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
181, 17syl 14 1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    C_ wss 3121    _I cid 4273   `'ccnv 4610   dom cdm 4611    |` cres 4613    o. ccom 4615   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by:  fcof1o  5768  mapen  6824  hashfacen  10771
  Copyright terms: Public domain W3C validator