ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi1 Unicode version

Theorem fcoi1 5434
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 5403 . 2  |-  ( F : A --> B  ->  F  Fn  A )
2 df-fn 5257 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
3 eqimss 3233 . . . . 5  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
4 cnvi 5070 . . . . . . . . . 10  |-  `'  _I  =  _I
54reseq1i 4938 . . . . . . . . 9  |-  ( `'  _I  |`  A )  =  (  _I  |`  A )
65cnveqi 4837 . . . . . . . 8  |-  `' ( `'  _I  |`  A )  =  `' (  _I  |`  A )
7 cnvresid 5328 . . . . . . . 8  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
86, 7eqtr2i 2215 . . . . . . 7  |-  (  _I  |`  A )  =  `' ( `'  _I  |`  A )
98coeq2i 4822 . . . . . 6  |-  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  `' ( `'  _I  |`  A )
)
10 cores2 5178 . . . . . 6  |-  ( dom 
F  C_  A  ->  ( F  o.  `' ( `'  _I  |`  A )
)  =  ( F  o.  _I  ) )
119, 10eqtrid 2238 . . . . 5  |-  ( dom 
F  C_  A  ->  ( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
123, 11syl 14 . . . 4  |-  ( dom 
F  =  A  -> 
( F  o.  (  _I  |`  A ) )  =  ( F  o.  _I  ) )
13 funrel 5271 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
14 coi1 5181 . . . . 5  |-  ( Rel 
F  ->  ( F  o.  _I  )  =  F )
1513, 14syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  o.  _I  )  =  F )
1612, 15sylan9eqr 2248 . . 3  |-  ( ( Fun  F  /\  dom  F  =  A )  -> 
( F  o.  (  _I  |`  A ) )  =  F )
172, 16sylbi 121 . 2  |-  ( F  Fn  A  ->  ( F  o.  (  _I  |`  A ) )  =  F )
181, 17syl 14 1  |-  ( F : A --> B  -> 
( F  o.  (  _I  |`  A ) )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3153    _I cid 4319   `'ccnv 4658   dom cdm 4659    |` cres 4661    o. ccom 4663   Rel wrel 4664   Fun wfun 5248    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  fcof1o  5832  mapen  6902  hashfacen  10907
  Copyright terms: Public domain W3C validator