ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposco Unicode version

Theorem tposco 6333
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)

Proof of Theorem tposco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coass 5188 . 2  |-  ( ( F  o.  G )  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
2 dftpos4 6321 . 2  |- tpos  ( F  o.  G )  =  ( ( F  o.  G )  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
3 dftpos4 6321 . . 3  |- tpos  G  =  ( G  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
43coeq2i 4826 . 2  |-  ( F  o. tpos  G )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
51, 2, 43eqtr4i 2227 1  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2763    u. cun 3155   (/)c0 3450   {csn 3622   U.cuni 3839    |-> cmpt 4094    X. cxp 4661   `'ccnv 4662    o. ccom 4667  tpos ctpos 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-tpos 6303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator