ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposco Unicode version

Theorem tposco 5994
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)

Proof of Theorem tposco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coass 4915 . 2  |-  ( ( F  o.  G )  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
2 dftpos4 5982 . 2  |- tpos  ( F  o.  G )  =  ( ( F  o.  G )  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
3 dftpos4 5982 . . 3  |- tpos  G  =  ( G  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
43coeq2i 4564 . 2  |-  ( F  o. tpos  G )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
51, 2, 43eqtr4i 2115 1  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)
Colors of variables: wff set class
Syntax hints:    = wceq 1287   _Vcvv 2615    u. cun 2986   (/)c0 3275   {csn 3431   U.cuni 3636    |-> cmpt 3874    X. cxp 4409   `'ccnv 4410    o. ccom 4415  tpos ctpos 5963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-fv 4989  df-tpos 5964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator