ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposco Unicode version

Theorem tposco 6276
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)

Proof of Theorem tposco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coass 5148 . 2  |-  ( ( F  o.  G )  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
2 dftpos4 6264 . 2  |- tpos  ( F  o.  G )  =  ( ( F  o.  G )  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
3 dftpos4 6264 . . 3  |- tpos  G  =  ( G  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
43coeq2i 4788 . 2  |-  ( F  o. tpos  G )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
51, 2, 43eqtr4i 2208 1  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2738    u. cun 3128   (/)c0 3423   {csn 3593   U.cuni 3810    |-> cmpt 4065    X. cxp 4625   `'ccnv 4626    o. ccom 4631  tpos ctpos 6245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-tpos 6246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator