| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbiegf | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| csbiegf.1 | 
 | 
| csbiegf.2 | 
 | 
| Ref | Expression | 
|---|---|
| csbiegf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbiegf.2 | 
. . 3
 | |
| 2 | 1 | ax-gen 1463 | 
. 2
 | 
| 3 | csbiegf.1 | 
. . 3
 | |
| 4 | csbiebt 3124 | 
. . 3
 | |
| 5 | 3, 4 | mpdan 421 | 
. 2
 | 
| 6 | 2, 5 | mpbii 148 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: csbief 3129 sbcco3g 3142 csbco3g 3143 fmptcof 5729 fmpoco 6274 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 iseqf1olemfvp 10602 seq3f1olemqsum 10605 sumsnf 11574 prodsnf 11757 pcmpt 12512 | 
| Copyright terms: Public domain | W3C validator |