ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 3168
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1  |-  ( A  e.  V  ->  F/_ x C )
csbiegf.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbiegf  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3  |-  ( x  =  A  ->  B  =  C )
21ax-gen 1495 . 2  |-  A. x
( x  =  A  ->  B  =  C )
3 csbiegf.1 . . 3  |-  ( A  e.  V  ->  F/_ x C )
4 csbiebt 3164 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
53, 4mpdan 421 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
62, 5mpbii 148 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   F/_wnfc 2359   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  csbief  3169  sbcco3g  3182  csbco3g  3183  fmptcof  5795  fmpoco  6352  iseqf1olemjpcl  10717  iseqf1olemqpcl  10718  iseqf1olemfvp  10719  seq3f1olemqsum  10722  sumsnf  11906  prodsnf  12089  pcmpt  12852
  Copyright terms: Public domain W3C validator