Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbiegf | Unicode version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbiegf.1 | |
csbiegf.2 |
Ref | Expression |
---|---|
csbiegf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiegf.2 | . . 3 | |
2 | 1 | ax-gen 1437 | . 2 |
3 | csbiegf.1 | . . 3 | |
4 | csbiebt 3084 | . . 3 | |
5 | 3, 4 | mpdan 418 | . 2 |
6 | 2, 5 | mpbii 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wcel 2136 wnfc 2295 csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: csbief 3089 sbcco3g 3102 csbco3g 3103 fmptcof 5652 fmpoco 6184 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 iseqf1olemfvp 10432 seq3f1olemqsum 10435 sumsnf 11350 prodsnf 11533 pcmpt 12273 |
Copyright terms: Public domain | W3C validator |