ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 3092
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1  |-  ( A  e.  V  ->  F/_ x C )
csbiegf.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbiegf  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3  |-  ( x  =  A  ->  B  =  C )
21ax-gen 1442 . 2  |-  A. x
( x  =  A  ->  B  =  C )
3 csbiegf.1 . . 3  |-  ( A  e.  V  ->  F/_ x C )
4 csbiebt 3088 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
53, 4mpdan 419 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
62, 5mpbii 147 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   F/_wnfc 2299   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbief  3093  sbcco3g  3106  csbco3g  3107  fmptcof  5663  fmpoco  6195  iseqf1olemjpcl  10451  iseqf1olemqpcl  10452  iseqf1olemfvp  10453  seq3f1olemqsum  10456  sumsnf  11372  prodsnf  11555  pcmpt  12295
  Copyright terms: Public domain W3C validator