Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 3038
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1
csbiegf.2
Assertion
Ref Expression
csbiegf
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3
21ax-gen 1425 . 2
3 csbiegf.1 . . 3
4 csbiebt 3034 . . 3
53, 4mpdan 417 . 2
62, 5mpbii 147 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1329   wceq 1331   wcel 1480  wnfc 2266  csb 2998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999 This theorem is referenced by:  csbief  3039  sbcco3g  3052  csbco3g  3053  fmptcof  5580  fmpoco  6106  iseqf1olemjpcl  10261  iseqf1olemqpcl  10262  iseqf1olemfvp  10263  seq3f1olemqsum  10266  sumsnf  11171
 Copyright terms: Public domain W3C validator