| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbiegf | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbiegf.1 |
|
| csbiegf.2 |
|
| Ref | Expression |
|---|---|
| csbiegf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.2 |
. . 3
| |
| 2 | 1 | ax-gen 1473 |
. 2
|
| 3 | csbiegf.1 |
. . 3
| |
| 4 | csbiebt 3134 |
. . 3
| |
| 5 | 3, 4 | mpdan 421 |
. 2
|
| 6 | 2, 5 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: csbief 3139 sbcco3g 3152 csbco3g 3153 fmptcof 5754 fmpoco 6309 iseqf1olemjpcl 10660 iseqf1olemqpcl 10661 iseqf1olemfvp 10662 seq3f1olemqsum 10665 sumsnf 11764 prodsnf 11947 pcmpt 12710 |
| Copyright terms: Public domain | W3C validator |