ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 3138
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1  |-  ( A  e.  V  ->  F/_ x C )
csbiegf.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbiegf  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3  |-  ( x  =  A  ->  B  =  C )
21ax-gen 1473 . 2  |-  A. x
( x  =  A  ->  B  =  C )
3 csbiegf.1 . . 3  |-  ( A  e.  V  ->  F/_ x C )
4 csbiebt 3134 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
53, 4mpdan 421 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
62, 5mpbii 148 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   F/_wnfc 2336   [_csb 3094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3000  df-csb 3095
This theorem is referenced by:  csbief  3139  sbcco3g  3152  csbco3g  3153  fmptcof  5754  fmpoco  6309  iseqf1olemjpcl  10660  iseqf1olemqpcl  10661  iseqf1olemfvp  10662  seq3f1olemqsum  10665  sumsnf  11764  prodsnf  11947  pcmpt  12710
  Copyright terms: Public domain W3C validator