Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbiebg | GIF version |
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
csbiebg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2185 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑥 = 𝑎 ↔ 𝑥 = 𝐴)) | |
2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ (𝑥 = 𝐴 → 𝐵 = 𝐶))) |
3 | 2 | albidv 1822 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶))) |
4 | csbeq1 3058 | . . 3 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 4 | eqeq1d 2184 | . 2 ⊢ (𝑎 = 𝐴 → (⦋𝑎 / 𝑥⦌𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
6 | vex 2738 | . . 3 ⊢ 𝑎 ∈ V | |
7 | csbiebg.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
8 | 6, 7 | csbieb 3096 | . 2 ⊢ (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ⦋𝑎 / 𝑥⦌𝐵 = 𝐶) |
9 | 3, 5, 8 | vtoclbg 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2146 Ⅎwnfc 2304 ⦋csb 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |