ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebg GIF version

Theorem csbiebg 3091
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
csbiebg.2 𝑥𝐶
Assertion
Ref Expression
csbiebg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2180 . . . 4 (𝑎 = 𝐴 → (𝑥 = 𝑎𝑥 = 𝐴))
21imbi1d 230 . . 3 (𝑎 = 𝐴 → ((𝑥 = 𝑎𝐵 = 𝐶) ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
32albidv 1817 . 2 (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
4 csbeq1 3052 . . 3 (𝑎 = 𝐴𝑎 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
54eqeq1d 2179 . 2 (𝑎 = 𝐴 → (𝑎 / 𝑥𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
6 vex 2733 . . 3 𝑎 ∈ V
7 csbiebg.2 . . 3 𝑥𝐶
86, 7csbieb 3090 . 2 (∀𝑥(𝑥 = 𝑎𝐵 = 𝐶) ↔ 𝑎 / 𝑥𝐵 = 𝐶)
93, 5, 8vtoclbg 2791 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  wnfc 2299  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator