![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbiebg | GIF version |
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
csbiebg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2187 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑥 = 𝑎 ↔ 𝑥 = 𝐴)) | |
2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ (𝑥 = 𝐴 → 𝐵 = 𝐶))) |
3 | 2 | albidv 1824 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶))) |
4 | csbeq1 3062 | . . 3 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 4 | eqeq1d 2186 | . 2 ⊢ (𝑎 = 𝐴 → (⦋𝑎 / 𝑥⦌𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
6 | vex 2742 | . . 3 ⊢ 𝑎 ∈ V | |
7 | csbiebg.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
8 | 6, 7 | csbieb 3100 | . 2 ⊢ (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ⦋𝑎 / 𝑥⦌𝐵 = 𝐶) |
9 | 3, 5, 8 | vtoclbg 2800 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 Ⅎwnfc 2306 ⦋csb 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sbc 2965 df-csb 3060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |