![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbiebg | GIF version |
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
csbiebg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2109 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑥 = 𝑎 ↔ 𝑥 = 𝐴)) | |
2 | 1 | imbi1d 230 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ (𝑥 = 𝐴 → 𝐵 = 𝐶))) |
3 | 2 | albidv 1763 | . 2 ⊢ (𝑎 = 𝐴 → (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶))) |
4 | csbeq1 2958 | . . 3 ⊢ (𝑎 = 𝐴 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
5 | 4 | eqeq1d 2108 | . 2 ⊢ (𝑎 = 𝐴 → (⦋𝑎 / 𝑥⦌𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
6 | vex 2644 | . . 3 ⊢ 𝑎 ∈ V | |
7 | csbiebg.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
8 | 6, 7 | csbieb 2991 | . 2 ⊢ (∀𝑥(𝑥 = 𝑎 → 𝐵 = 𝐶) ↔ ⦋𝑎 / 𝑥⦌𝐵 = 𝐶) |
9 | 3, 5, 8 | vtoclbg 2702 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 Ⅎwnfc 2227 ⦋csb 2955 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sbc 2863 df-csb 2956 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |