ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssneld Unicode version

Theorem ssneld 3094
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssneld  |-  ( ph  ->  ( -.  C  e.  B  ->  -.  C  e.  A ) )

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3  |-  ( ph  ->  A  C_  B )
21sseld 3091 . 2  |-  ( ph  ->  ( C  e.  A  ->  C  e.  B ) )
32con3d 620 1  |-  ( ph  ->  ( -.  C  e.  B  ->  -.  C  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1480    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-in 3072  df-ss 3079
This theorem is referenced by:  ssneldd  3095  sumdc  11120  summodclem2a  11143  zsumdc  11146  isumss2  11155  decidin  12993
  Copyright terms: Public domain W3C validator