Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssneld | Unicode version |
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 |
Ref | Expression |
---|---|
ssneld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneld.1 | . . 3 | |
2 | 1 | sseld 3123 | . 2 |
3 | 2 | con3d 621 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2125 wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: ssneldd 3127 sumdc 11232 summodclem2a 11255 zsumdc 11258 isumss2 11267 zproddc 11453 prodssdc 11463 decidin 13309 |
Copyright terms: Public domain | W3C validator |