| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssneld | Unicode version | ||
| Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 |
|
| Ref | Expression |
|---|---|
| ssneld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneld.1 |
. . 3
| |
| 2 | 1 | sseld 3223 |
. 2
|
| 3 | 2 | con3d 634 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssneldd 3227 sumdc 11869 summodclem2a 11892 zsumdc 11895 isumss2 11904 zproddc 12090 prodssdc 12100 decidin 16161 |
| Copyright terms: Public domain | W3C validator |