Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotass | Unicode version |
Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
iotass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 5153 | . 2 | |
2 | unieq 3798 | . . . . . . . 8 | |
3 | vex 2729 | . . . . . . . . 9 | |
4 | 3 | unisn 3805 | . . . . . . . 8 |
5 | 2, 4 | eqtrdi 2215 | . . . . . . 7 |
6 | df-pw 3561 | . . . . . . . . . . 11 | |
7 | 6 | sseq2i 3169 | . . . . . . . . . 10 |
8 | ss2ab 3210 | . . . . . . . . . 10 | |
9 | 7, 8 | bitri 183 | . . . . . . . . 9 |
10 | 9 | biimpri 132 | . . . . . . . 8 |
11 | sspwuni 3950 | . . . . . . . 8 | |
12 | 10, 11 | sylib 121 | . . . . . . 7 |
13 | sseq1 3165 | . . . . . . . 8 | |
14 | 13 | biimpa 294 | . . . . . . 7 |
15 | 5, 12, 14 | syl2anr 288 | . . . . . 6 |
16 | 15 | ex 114 | . . . . 5 |
17 | 16 | ss2abdv 3215 | . . . 4 |
18 | df-pw 3561 | . . . 4 | |
19 | 17, 18 | sseqtrrdi 3191 | . . 3 |
20 | sspwuni 3950 | . . 3 | |
21 | 19, 20 | sylib 121 | . 2 |
22 | 1, 21 | eqsstrid 3188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 cab 2151 wss 3116 cpw 3559 csn 3576 cuni 3789 cio 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 |
This theorem is referenced by: fvss 5500 riotaexg 5802 |
Copyright terms: Public domain | W3C validator |