Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotass | Unicode version |
Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
iotass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 5160 | . 2 | |
2 | unieq 3805 | . . . . . . . 8 | |
3 | vex 2733 | . . . . . . . . 9 | |
4 | 3 | unisn 3812 | . . . . . . . 8 |
5 | 2, 4 | eqtrdi 2219 | . . . . . . 7 |
6 | df-pw 3568 | . . . . . . . . . . 11 | |
7 | 6 | sseq2i 3174 | . . . . . . . . . 10 |
8 | ss2ab 3215 | . . . . . . . . . 10 | |
9 | 7, 8 | bitri 183 | . . . . . . . . 9 |
10 | 9 | biimpri 132 | . . . . . . . 8 |
11 | sspwuni 3957 | . . . . . . . 8 | |
12 | 10, 11 | sylib 121 | . . . . . . 7 |
13 | sseq1 3170 | . . . . . . . 8 | |
14 | 13 | biimpa 294 | . . . . . . 7 |
15 | 5, 12, 14 | syl2anr 288 | . . . . . 6 |
16 | 15 | ex 114 | . . . . 5 |
17 | 16 | ss2abdv 3220 | . . . 4 |
18 | df-pw 3568 | . . . 4 | |
19 | 17, 18 | sseqtrrdi 3196 | . . 3 |
20 | sspwuni 3957 | . . 3 | |
21 | 19, 20 | sylib 121 | . 2 |
22 | 1, 21 | eqsstrid 3193 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 cab 2156 wss 3121 cpw 3566 csn 3583 cuni 3796 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: fvss 5510 riotaexg 5813 |
Copyright terms: Public domain | W3C validator |