| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotass | Unicode version | ||
| Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.) |
| Ref | Expression |
|---|---|
| iotass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 5232 |
. 2
| |
| 2 | unieq 3859 |
. . . . . . . 8
| |
| 3 | vex 2775 |
. . . . . . . . 9
| |
| 4 | 3 | unisn 3866 |
. . . . . . . 8
|
| 5 | 2, 4 | eqtrdi 2254 |
. . . . . . 7
|
| 6 | df-pw 3618 |
. . . . . . . . . . 11
| |
| 7 | 6 | sseq2i 3220 |
. . . . . . . . . 10
|
| 8 | ss2ab 3261 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | bitri 184 |
. . . . . . . . 9
|
| 10 | 9 | biimpri 133 |
. . . . . . . 8
|
| 11 | sspwuni 4012 |
. . . . . . . 8
| |
| 12 | 10, 11 | sylib 122 |
. . . . . . 7
|
| 13 | sseq1 3216 |
. . . . . . . 8
| |
| 14 | 13 | biimpa 296 |
. . . . . . 7
|
| 15 | 5, 12, 14 | syl2anr 290 |
. . . . . 6
|
| 16 | 15 | ex 115 |
. . . . 5
|
| 17 | 16 | ss2abdv 3266 |
. . . 4
|
| 18 | df-pw 3618 |
. . . 4
| |
| 19 | 17, 18 | sseqtrrdi 3242 |
. . 3
|
| 20 | sspwuni 4012 |
. . 3
| |
| 21 | 19, 20 | sylib 122 |
. 2
|
| 22 | 1, 21 | eqsstrid 3239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5232 |
| This theorem is referenced by: iotaexab 5250 fvss 5590 riotaexg 5903 |
| Copyright terms: Public domain | W3C validator |