ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotass Unicode version

Theorem iotass 5113
Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
iotass  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( iota x ph )  C_  A )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem iotass
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iota 5096 . 2  |-  ( iota
x ph )  =  U. { y  |  {
x  |  ph }  =  { y } }
2 unieq 3753 . . . . . . . 8  |-  ( { x  |  ph }  =  { y }  ->  U. { x  |  ph }  =  U. { y } )
3 vex 2692 . . . . . . . . 9  |-  y  e. 
_V
43unisn 3760 . . . . . . . 8  |-  U. {
y }  =  y
52, 4eqtrdi 2189 . . . . . . 7  |-  ( { x  |  ph }  =  { y }  ->  U. { x  |  ph }  =  y )
6 df-pw 3517 . . . . . . . . . . 11  |-  ~P A  =  { x  |  x 
C_  A }
76sseq2i 3129 . . . . . . . . . 10  |-  ( { x  |  ph }  C_ 
~P A  <->  { x  |  ph }  C_  { x  |  x  C_  A }
)
8 ss2ab 3170 . . . . . . . . . 10  |-  ( { x  |  ph }  C_ 
{ x  |  x 
C_  A }  <->  A. x
( ph  ->  x  C_  A ) )
97, 8bitri 183 . . . . . . . . 9  |-  ( { x  |  ph }  C_ 
~P A  <->  A. x
( ph  ->  x  C_  A ) )
109biimpri 132 . . . . . . . 8  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { x  |  ph }  C_ 
~P A )
11 sspwuni 3905 . . . . . . . 8  |-  ( { x  |  ph }  C_ 
~P A  <->  U. { x  |  ph }  C_  A
)
1210, 11sylib 121 . . . . . . 7  |-  ( A. x ( ph  ->  x 
C_  A )  ->  U. { x  |  ph }  C_  A )
13 sseq1 3125 . . . . . . . 8  |-  ( U. { x  |  ph }  =  y  ->  ( U. { x  |  ph }  C_  A  <->  y  C_  A
) )
1413biimpa 294 . . . . . . 7  |-  ( ( U. { x  | 
ph }  =  y  /\  U. { x  |  ph }  C_  A
)  ->  y  C_  A )
155, 12, 14syl2anr 288 . . . . . 6  |-  ( ( A. x ( ph  ->  x  C_  A )  /\  { x  |  ph }  =  { y } )  ->  y  C_  A )
1615ex 114 . . . . 5  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( { x  | 
ph }  =  {
y }  ->  y  C_  A ) )
1716ss2abdv 3175 . . . 4  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { y  |  {
x  |  ph }  =  { y } }  C_ 
{ y  |  y 
C_  A } )
18 df-pw 3517 . . . 4  |-  ~P A  =  { y  |  y 
C_  A }
1917, 18sseqtrrdi 3151 . . 3  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { y  |  {
x  |  ph }  =  { y } }  C_ 
~P A )
20 sspwuni 3905 . . 3  |-  ( { y  |  { x  |  ph }  =  {
y } }  C_  ~P A  <->  U. { y  |  { x  |  ph }  =  { y } }  C_  A )
2119, 20sylib 121 . 2  |-  ( A. x ( ph  ->  x 
C_  A )  ->  U. { y  |  {
x  |  ph }  =  { y } }  C_  A )
221, 21eqsstrid 3148 1  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( iota x ph )  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1330    = wceq 1332   {cab 2126    C_ wss 3076   ~Pcpw 3515   {csn 3532   U.cuni 3744   iotacio 5094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-iota 5096
This theorem is referenced by:  fvss  5443  riotaexg  5742
  Copyright terms: Public domain W3C validator