| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotass | Unicode version | ||
| Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.) |
| Ref | Expression |
|---|---|
| iotass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 5278 |
. 2
| |
| 2 | unieq 3897 |
. . . . . . . 8
| |
| 3 | vex 2802 |
. . . . . . . . 9
| |
| 4 | 3 | unisn 3904 |
. . . . . . . 8
|
| 5 | 2, 4 | eqtrdi 2278 |
. . . . . . 7
|
| 6 | df-pw 3651 |
. . . . . . . . . . 11
| |
| 7 | 6 | sseq2i 3251 |
. . . . . . . . . 10
|
| 8 | ss2ab 3292 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | bitri 184 |
. . . . . . . . 9
|
| 10 | 9 | biimpri 133 |
. . . . . . . 8
|
| 11 | sspwuni 4050 |
. . . . . . . 8
| |
| 12 | 10, 11 | sylib 122 |
. . . . . . 7
|
| 13 | sseq1 3247 |
. . . . . . . 8
| |
| 14 | 13 | biimpa 296 |
. . . . . . 7
|
| 15 | 5, 12, 14 | syl2anr 290 |
. . . . . 6
|
| 16 | 15 | ex 115 |
. . . . 5
|
| 17 | 16 | ss2abdv 3297 |
. . . 4
|
| 18 | df-pw 3651 |
. . . 4
| |
| 19 | 17, 18 | sseqtrrdi 3273 |
. . 3
|
| 20 | sspwuni 4050 |
. . 3
| |
| 21 | 19, 20 | sylib 122 |
. 2
|
| 22 | 1, 21 | eqsstrid 3270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 |
| This theorem is referenced by: iotaexab 5297 fvss 5641 riotaexg 5958 |
| Copyright terms: Public domain | W3C validator |