ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotass Unicode version

Theorem iotass 5177
Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
iotass  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( iota x ph )  C_  A )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem iotass
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iota 5160 . 2  |-  ( iota
x ph )  =  U. { y  |  {
x  |  ph }  =  { y } }
2 unieq 3805 . . . . . . . 8  |-  ( { x  |  ph }  =  { y }  ->  U. { x  |  ph }  =  U. { y } )
3 vex 2733 . . . . . . . . 9  |-  y  e. 
_V
43unisn 3812 . . . . . . . 8  |-  U. {
y }  =  y
52, 4eqtrdi 2219 . . . . . . 7  |-  ( { x  |  ph }  =  { y }  ->  U. { x  |  ph }  =  y )
6 df-pw 3568 . . . . . . . . . . 11  |-  ~P A  =  { x  |  x 
C_  A }
76sseq2i 3174 . . . . . . . . . 10  |-  ( { x  |  ph }  C_ 
~P A  <->  { x  |  ph }  C_  { x  |  x  C_  A }
)
8 ss2ab 3215 . . . . . . . . . 10  |-  ( { x  |  ph }  C_ 
{ x  |  x 
C_  A }  <->  A. x
( ph  ->  x  C_  A ) )
97, 8bitri 183 . . . . . . . . 9  |-  ( { x  |  ph }  C_ 
~P A  <->  A. x
( ph  ->  x  C_  A ) )
109biimpri 132 . . . . . . . 8  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { x  |  ph }  C_ 
~P A )
11 sspwuni 3957 . . . . . . . 8  |-  ( { x  |  ph }  C_ 
~P A  <->  U. { x  |  ph }  C_  A
)
1210, 11sylib 121 . . . . . . 7  |-  ( A. x ( ph  ->  x 
C_  A )  ->  U. { x  |  ph }  C_  A )
13 sseq1 3170 . . . . . . . 8  |-  ( U. { x  |  ph }  =  y  ->  ( U. { x  |  ph }  C_  A  <->  y  C_  A
) )
1413biimpa 294 . . . . . . 7  |-  ( ( U. { x  | 
ph }  =  y  /\  U. { x  |  ph }  C_  A
)  ->  y  C_  A )
155, 12, 14syl2anr 288 . . . . . 6  |-  ( ( A. x ( ph  ->  x  C_  A )  /\  { x  |  ph }  =  { y } )  ->  y  C_  A )
1615ex 114 . . . . 5  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( { x  | 
ph }  =  {
y }  ->  y  C_  A ) )
1716ss2abdv 3220 . . . 4  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { y  |  {
x  |  ph }  =  { y } }  C_ 
{ y  |  y 
C_  A } )
18 df-pw 3568 . . . 4  |-  ~P A  =  { y  |  y 
C_  A }
1917, 18sseqtrrdi 3196 . . 3  |-  ( A. x ( ph  ->  x 
C_  A )  ->  { y  |  {
x  |  ph }  =  { y } }  C_ 
~P A )
20 sspwuni 3957 . . 3  |-  ( { y  |  { x  |  ph }  =  {
y } }  C_  ~P A  <->  U. { y  |  { x  |  ph }  =  { y } }  C_  A )
2119, 20sylib 121 . 2  |-  ( A. x ( ph  ->  x 
C_  A )  ->  U. { y  |  {
x  |  ph }  =  { y } }  C_  A )
221, 21eqsstrid 3193 1  |-  ( A. x ( ph  ->  x 
C_  A )  -> 
( iota x ph )  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348   {cab 2156    C_ wss 3121   ~Pcpw 3566   {csn 3583   U.cuni 3796   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  fvss  5510  riotaexg  5813
  Copyright terms: Public domain W3C validator