ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssexg Unicode version

Theorem abssexg 4227
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 4225 . 2  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 df-pw 3618 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
32eleq1i 2271 . . 3  |-  ( ~P A  e.  _V  <->  { x  |  x  C_  A }  e.  _V )
4 simpl 109 . . . . 5  |-  ( ( x  C_  A  /\  ph )  ->  x  C_  A
)
54ss2abi 3265 . . . 4  |-  { x  |  ( x  C_  A  /\  ph ) } 
C_  { x  |  x  C_  A }
6 ssexg 4184 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  ph ) }  C_  { x  |  x  C_  A }  /\  { x  |  x 
C_  A }  e.  _V )  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
75, 6mpan 424 . . 3  |-  ( { x  |  x  C_  A }  e.  _V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
83, 7sylbi 121 . 2  |-  ( ~P A  e.  _V  ->  { x  |  ( x 
C_  A  /\  ph ) }  e.  _V )
91, 8syl 14 1  |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   {cab 2191   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  pmex  6742  tgval  13127
  Copyright terms: Public domain W3C validator