Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abssexg | Unicode version |
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
abssexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4159 | . 2 | |
2 | df-pw 3561 | . . . 4 | |
3 | 2 | eleq1i 2232 | . . 3 |
4 | simpl 108 | . . . . 5 | |
5 | 4 | ss2abi 3214 | . . . 4 |
6 | ssexg 4121 | . . . 4 | |
7 | 5, 6 | mpan 421 | . . 3 |
8 | 3, 7 | sylbi 120 | . 2 |
9 | 1, 8 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cab 2151 cvv 2726 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: pmex 6619 tgval 12689 |
Copyright terms: Public domain | W3C validator |