| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunpw | Unicode version | ||
| Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpw.1 |
|
| Ref | Expression |
|---|---|
| iunpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3207 |
. . . . . . . 8
| |
| 2 | 1 | biimprcd 160 |
. . . . . . 7
|
| 3 | 2 | reximdv 2598 |
. . . . . 6
|
| 4 | 3 | com12 30 |
. . . . 5
|
| 5 | ssiun 3958 |
. . . . . 6
| |
| 6 | uniiun 3970 |
. . . . . 6
| |
| 7 | 5, 6 | sseqtrrdi 3232 |
. . . . 5
|
| 8 | 4, 7 | impbid1 142 |
. . . 4
|
| 9 | vex 2766 |
. . . . 5
| |
| 10 | 9 | elpw 3611 |
. . . 4
|
| 11 | eliun 3920 |
. . . . 5
| |
| 12 | df-pw 3607 |
. . . . . . 7
| |
| 13 | 12 | abeq2i 2307 |
. . . . . 6
|
| 14 | 13 | rexbii 2504 |
. . . . 5
|
| 15 | 11, 14 | bitri 184 |
. . . 4
|
| 16 | 8, 10, 15 | 3bitr4g 223 |
. . 3
|
| 17 | 16 | eqrdv 2194 |
. 2
|
| 18 | ssid 3203 |
. . . . 5
| |
| 19 | iunpw.1 |
. . . . . . . 8
| |
| 20 | 19 | uniex 4472 |
. . . . . . 7
|
| 21 | 20 | elpw 3611 |
. . . . . 6
|
| 22 | eleq2 2260 |
. . . . . 6
| |
| 23 | 21, 22 | bitr3id 194 |
. . . . 5
|
| 24 | 18, 23 | mpbii 148 |
. . . 4
|
| 25 | eliun 3920 |
. . . 4
| |
| 26 | 24, 25 | sylib 122 |
. . 3
|
| 27 | elssuni 3867 |
. . . . . . 7
| |
| 28 | elpwi 3614 |
. . . . . . 7
| |
| 29 | 27, 28 | anim12i 338 |
. . . . . 6
|
| 30 | eqss 3198 |
. . . . . 6
| |
| 31 | 29, 30 | sylibr 134 |
. . . . 5
|
| 32 | 31 | ex 115 |
. . . 4
|
| 33 | 32 | reximia 2592 |
. . 3
|
| 34 | 26, 33 | syl 14 |
. 2
|
| 35 | 17, 34 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-iun 3918 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |