| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunpw | Unicode version | ||
| Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpw.1 |
|
| Ref | Expression |
|---|---|
| iunpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3248 |
. . . . . . . 8
| |
| 2 | 1 | biimprcd 160 |
. . . . . . 7
|
| 3 | 2 | reximdv 2631 |
. . . . . 6
|
| 4 | 3 | com12 30 |
. . . . 5
|
| 5 | ssiun 4007 |
. . . . . 6
| |
| 6 | uniiun 4019 |
. . . . . 6
| |
| 7 | 5, 6 | sseqtrrdi 3273 |
. . . . 5
|
| 8 | 4, 7 | impbid1 142 |
. . . 4
|
| 9 | vex 2802 |
. . . . 5
| |
| 10 | 9 | elpw 3655 |
. . . 4
|
| 11 | eliun 3969 |
. . . . 5
| |
| 12 | df-pw 3651 |
. . . . . . 7
| |
| 13 | 12 | abeq2i 2340 |
. . . . . 6
|
| 14 | 13 | rexbii 2537 |
. . . . 5
|
| 15 | 11, 14 | bitri 184 |
. . . 4
|
| 16 | 8, 10, 15 | 3bitr4g 223 |
. . 3
|
| 17 | 16 | eqrdv 2227 |
. 2
|
| 18 | ssid 3244 |
. . . . 5
| |
| 19 | iunpw.1 |
. . . . . . . 8
| |
| 20 | 19 | uniex 4528 |
. . . . . . 7
|
| 21 | 20 | elpw 3655 |
. . . . . 6
|
| 22 | eleq2 2293 |
. . . . . 6
| |
| 23 | 21, 22 | bitr3id 194 |
. . . . 5
|
| 24 | 18, 23 | mpbii 148 |
. . . 4
|
| 25 | eliun 3969 |
. . . 4
| |
| 26 | 24, 25 | sylib 122 |
. . 3
|
| 27 | elssuni 3916 |
. . . . . . 7
| |
| 28 | elpwi 3658 |
. . . . . . 7
| |
| 29 | 27, 28 | anim12i 338 |
. . . . . 6
|
| 30 | eqss 3239 |
. . . . . 6
| |
| 31 | 29, 30 | sylibr 134 |
. . . . 5
|
| 32 | 31 | ex 115 |
. . . 4
|
| 33 | 32 | reximia 2625 |
. . 3
|
| 34 | 26, 33 | syl 14 |
. 2
|
| 35 | 17, 34 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-iun 3967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |