ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex Unicode version

Theorem tgvalex 12934
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )

Proof of Theorem tgvalex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 tgval 12933 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { y  |  y 
C_  U. ( B  i^i  ~P y ) } )
2 inss1 3383 . . . . . . 7  |-  ( B  i^i  ~P y ) 
C_  B
32unissi 3862 . . . . . 6  |-  U. ( B  i^i  ~P y ) 
C_  U. B
4 sstr 3191 . . . . . 6  |-  ( ( y  C_  U. ( B  i^i  ~P y )  /\  U. ( B  i^i  ~P y ) 
C_  U. B )  -> 
y  C_  U. B )
53, 4mpan2 425 . . . . 5  |-  ( y 
C_  U. ( B  i^i  ~P y )  ->  y  C_ 
U. B )
65ss2abi 3255 . . . 4  |-  { y  |  y  C_  U. ( B  i^i  ~P y ) }  C_  { y  |  y  C_  U. B }
7 df-pw 3607 . . . 4  |-  ~P U. B  =  { y  |  y  C_  U. B }
86, 7sseqtrri 3218 . . 3  |-  { y  |  y  C_  U. ( B  i^i  ~P y ) }  C_  ~P U. B
9 uniexg 4474 . . . 4  |-  ( B  e.  V  ->  U. B  e.  _V )
109pwexd 4214 . . 3  |-  ( B  e.  V  ->  ~P U. B  e.  _V )
11 ssexg 4172 . . 3  |-  ( ( { y  |  y 
C_  U. ( B  i^i  ~P y ) }  C_  ~P U. B  /\  ~P U. B  e.  _V )  ->  { y  |  y 
C_  U. ( B  i^i  ~P y ) }  e.  _V )
128, 10, 11sylancr 414 . 2  |-  ( B  e.  V  ->  { y  |  y  C_  U. ( B  i^i  ~P y ) }  e.  _V )
131, 12eqeltrd 2273 1  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   {cab 2182   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   ` cfv 5258   topGenctg 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topgen 12931
This theorem is referenced by:  ptex  12935  mopnset  14108  tgcl  14300  tgidm  14310  tgss3  14314  2basgeng  14318  tgrest  14405  txvalex  14490  txval  14491  txbasval  14503
  Copyright terms: Public domain W3C validator