ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex Unicode version

Theorem tgvalex 13210
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )

Proof of Theorem tgvalex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 tgval 13209 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { y  |  y 
C_  U. ( B  i^i  ~P y ) } )
2 inss1 3401 . . . . . . 7  |-  ( B  i^i  ~P y ) 
C_  B
32unissi 3887 . . . . . 6  |-  U. ( B  i^i  ~P y ) 
C_  U. B
4 sstr 3209 . . . . . 6  |-  ( ( y  C_  U. ( B  i^i  ~P y )  /\  U. ( B  i^i  ~P y ) 
C_  U. B )  -> 
y  C_  U. B )
53, 4mpan2 425 . . . . 5  |-  ( y 
C_  U. ( B  i^i  ~P y )  ->  y  C_ 
U. B )
65ss2abi 3273 . . . 4  |-  { y  |  y  C_  U. ( B  i^i  ~P y ) }  C_  { y  |  y  C_  U. B }
7 df-pw 3628 . . . 4  |-  ~P U. B  =  { y  |  y  C_  U. B }
86, 7sseqtrri 3236 . . 3  |-  { y  |  y  C_  U. ( B  i^i  ~P y ) }  C_  ~P U. B
9 uniexg 4504 . . . 4  |-  ( B  e.  V  ->  U. B  e.  _V )
109pwexd 4241 . . 3  |-  ( B  e.  V  ->  ~P U. B  e.  _V )
11 ssexg 4199 . . 3  |-  ( ( { y  |  y 
C_  U. ( B  i^i  ~P y ) }  C_  ~P U. B  /\  ~P U. B  e.  _V )  ->  { y  |  y 
C_  U. ( B  i^i  ~P y ) }  e.  _V )
128, 10, 11sylancr 414 . 2  |-  ( B  e.  V  ->  { y  |  y  C_  U. ( B  i^i  ~P y ) }  e.  _V )
131, 12eqeltrd 2284 1  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   {cab 2193   _Vcvv 2776    i^i cin 3173    C_ wss 3174   ~Pcpw 3626   U.cuni 3864   ` cfv 5290   topGenctg 13201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207
This theorem is referenced by:  ptex  13211  mopnset  14429  tgcl  14651  tgidm  14661  tgss3  14665  2basgeng  14669  tgrest  14756  txvalex  14841  txval  14842  txbasval  14854
  Copyright terms: Public domain W3C validator