Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapex | Unicode version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
mapex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5355 | . . . 4 | |
2 | 1 | ss2abi 3214 | . . 3 |
3 | df-pw 3561 | . . 3 | |
4 | 2, 3 | sseqtrri 3177 | . 2 |
5 | xpexg 4718 | . . 3 | |
6 | pwexg 4159 | . . 3 | |
7 | 5, 6 | syl 14 | . 2 |
8 | ssexg 4121 | . 2 | |
9 | 4, 7, 8 | sylancr 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cab 2151 cvv 2726 wss 3116 cpw 3559 cxp 4602 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: fnmap 6621 mapvalg 6624 nninfex 7086 cnovex 12836 ispsmet 12963 cncfval 13199 |
Copyright terms: Public domain | W3C validator |