| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mapex | Unicode version | ||
| Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) | 
| Ref | Expression | 
|---|---|
| mapex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fssxp 5425 | 
. . . 4
 | |
| 2 | 1 | ss2abi 3255 | 
. . 3
 | 
| 3 | df-pw 3607 | 
. . 3
 | |
| 4 | 2, 3 | sseqtrri 3218 | 
. 2
 | 
| 5 | xpexg 4777 | 
. . 3
 | |
| 6 | pwexg 4213 | 
. . 3
 | |
| 7 | 5, 6 | syl 14 | 
. 2
 | 
| 8 | ssexg 4172 | 
. 2
 | |
| 9 | 4, 7, 8 | sylancr 414 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: fnmap 6714 mapvalg 6717 exmidpw2en 6973 nninfex 7187 ptex 12935 isghm 13373 psrval 14220 psrbasg 14227 cnovex 14432 ispsmet 14559 cncfval 14808 | 
| Copyright terms: Public domain | W3C validator |