ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapex Unicode version

Theorem mapex 6514
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 5258 . . . 4  |-  ( f : A --> B  -> 
f  C_  ( A  X.  B ) )
21ss2abi 3137 . . 3  |-  { f  |  f : A --> B }  C_  { f  |  f  C_  ( A  X.  B ) }
3 df-pw 3480 . . 3  |-  ~P ( A  X.  B )  =  { f  |  f 
C_  ( A  X.  B ) }
42, 3sseqtrri 3100 . 2  |-  { f  |  f : A --> B }  C_  ~P ( A  X.  B )
5 xpexg 4621 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
6 pwexg 4072 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
75, 6syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( A  X.  B )  e.  _V )
8 ssexg 4035 . 2  |-  ( ( { f  |  f : A --> B }  C_ 
~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  { f  |  f : A --> B }  e.  _V )
94, 7, 8sylancr 408 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   {cab 2101   _Vcvv 2658    C_ wss 3039   ~Pcpw 3478    X. cxp 4505   -->wf 5087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514  df-cnv 4515  df-dm 4517  df-rn 4518  df-fun 5093  df-fn 5094  df-f 5095
This theorem is referenced by:  fnmap  6515  mapvalg  6518  cnovex  12271  ispsmet  12398  cncfval  12634  nninfex  13039
  Copyright terms: Public domain W3C validator