ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex Unicode version

Theorem nninfdcex 11956
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a  |-  ( ph  ->  A  C_  NN )
nninfdcex.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdcex.m  |-  ( ph  ->  E. y  y  e.  A )
Assertion
Ref Expression
nninfdcex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y
Allowed substitution hint:    ph( z)

Proof of Theorem nninfdcex
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3  |-  ( ph  ->  E. y  y  e.  A )
2 eleq1w 2238 . . . 4  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
32cbvexv 1918 . . 3  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 1zzd 9282 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  1  e.  ZZ )
6 eqid 2177 . . . 4  |-  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }
7 nninfdcex.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 nnuz 9565 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
97, 8sseqtrdi 3205 . . . . . . . 8  |-  ( ph  ->  A  C_  ( ZZ>= ` 
1 ) )
10 dfss5 3342 . . . . . . . 8  |-  ( A 
C_  ( ZZ>= `  1
)  <->  A  =  (
( ZZ>= `  1 )  i^i  A ) )
119, 10sylib 122 . . . . . . 7  |-  ( ph  ->  A  =  ( (
ZZ>= `  1 )  i^i 
A ) )
12 dfin5 3138 . . . . . . 7  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }
1311, 12eqtrdi 2226 . . . . . 6  |-  ( ph  ->  A  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } )
1413eleq2d 2247 . . . . 5  |-  ( ph  ->  ( a  e.  A  <->  a  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } ) )
1514biimpa 296 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
)
16 eleq1w 2238 . . . . . 6  |-  ( x  =  p  ->  (
x  e.  A  <->  p  e.  A ) )
1716dcbid 838 . . . . 5  |-  ( x  =  p  ->  (DECID  x  e.  A  <-> DECID  p  e.  A )
)
18 nninfdcex.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  A. x  e.  NN DECID  x  e.  A )
20 elfznn 10056 . . . . . 6  |-  ( p  e.  ( 1 ... a )  ->  p  e.  NN )
2120adantl 277 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  p  e.  NN )
2217, 19, 21rspcdva 2848 . . . 4  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  -> DECID  p  e.  A
)
235, 6, 15, 22infssuzex 11952 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2413raleqdv 2679 . . . . . 6  |-  ( ph  ->  ( A. y  e.  A  -.  y  < 
x  <->  A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x ) )
2513rexeqdv 2680 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) )
2625imbi2d 230 . . . . . . 7  |-  ( ph  ->  ( ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  ( x  < 
y  ->  E. z  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
z  <  y )
) )
2726ralbidv 2477 . . . . . 6  |-  ( ph  ->  ( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2824, 27anbi12d 473 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
2928rexbidv 2478 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3029adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3123, 30mpbird 167 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
324, 31exlimddv 1898 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    i^i cin 3130    C_ wss 3131   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   1c1 7814    < clt 7994   NNcn 8921   ZZ>=cuz 9530   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145
This theorem is referenced by:  nninfdclemp1  12453
  Copyright terms: Public domain W3C validator