ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex Unicode version

Theorem nninfdcex 11853
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a  |-  ( ph  ->  A  C_  NN )
nninfdcex.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdcex.m  |-  ( ph  ->  E. y  y  e.  A )
Assertion
Ref Expression
nninfdcex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y
Allowed substitution hint:    ph( z)

Proof of Theorem nninfdcex
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3  |-  ( ph  ->  E. y  y  e.  A )
2 eleq1w 2218 . . . 4  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
32cbvexv 1898 . . 3  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 121 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 1zzd 9200 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  1  e.  ZZ )
6 eqid 2157 . . . 4  |-  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }
7 nninfdcex.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 nnuz 9480 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
97, 8sseqtrdi 3176 . . . . . . . 8  |-  ( ph  ->  A  C_  ( ZZ>= ` 
1 ) )
10 dfss5 3313 . . . . . . . 8  |-  ( A 
C_  ( ZZ>= `  1
)  <->  A  =  (
( ZZ>= `  1 )  i^i  A ) )
119, 10sylib 121 . . . . . . 7  |-  ( ph  ->  A  =  ( (
ZZ>= `  1 )  i^i 
A ) )
12 dfin5 3109 . . . . . . 7  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }
1311, 12eqtrdi 2206 . . . . . 6  |-  ( ph  ->  A  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } )
1413eleq2d 2227 . . . . 5  |-  ( ph  ->  ( a  e.  A  <->  a  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } ) )
1514biimpa 294 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
)
16 eleq1w 2218 . . . . . 6  |-  ( x  =  p  ->  (
x  e.  A  <->  p  e.  A ) )
1716dcbid 824 . . . . 5  |-  ( x  =  p  ->  (DECID  x  e.  A  <-> DECID  p  e.  A )
)
18 nninfdcex.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1918ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  A. x  e.  NN DECID  x  e.  A )
20 elfznn 9963 . . . . . 6  |-  ( p  e.  ( 1 ... a )  ->  p  e.  NN )
2120adantl 275 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  p  e.  NN )
2217, 19, 21rspcdva 2821 . . . 4  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  -> DECID  p  e.  A
)
235, 6, 15, 22infssuzex 11849 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2413raleqdv 2658 . . . . . 6  |-  ( ph  ->  ( A. y  e.  A  -.  y  < 
x  <->  A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x ) )
2513rexeqdv 2659 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) )
2625imbi2d 229 . . . . . . 7  |-  ( ph  ->  ( ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  ( x  < 
y  ->  E. z  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
z  <  y )
) )
2726ralbidv 2457 . . . . . 6  |-  ( ph  ->  ( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2824, 27anbi12d 465 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
2928rexbidv 2458 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3029adantr 274 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3123, 30mpbird 166 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
324, 31exlimddv 1878 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   E.wrex 2436   {crab 2439    i^i cin 3101    C_ wss 3102   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   RRcr 7734   1c1 7736    < clt 7915   NNcn 8839   ZZ>=cuz 9445   ...cfz 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052
This theorem is referenced by:  nninfdclemp1  12277
  Copyright terms: Public domain W3C validator