ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex Unicode version

Theorem nninfdcex 10380
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a  |-  ( ph  ->  A  C_  NN )
nninfdcex.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdcex.m  |-  ( ph  ->  E. y  y  e.  A )
Assertion
Ref Expression
nninfdcex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y
Allowed substitution hint:    ph( z)

Proof of Theorem nninfdcex
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3  |-  ( ph  ->  E. y  y  e.  A )
2 eleq1w 2266 . . . 4  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
32cbvexv 1942 . . 3  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 1zzd 9399 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  1  e.  ZZ )
6 eqid 2205 . . . 4  |-  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }
7 nninfdcex.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 nnuz 9684 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
97, 8sseqtrdi 3241 . . . . . . . 8  |-  ( ph  ->  A  C_  ( ZZ>= ` 
1 ) )
10 dfss5 3378 . . . . . . . 8  |-  ( A 
C_  ( ZZ>= `  1
)  <->  A  =  (
( ZZ>= `  1 )  i^i  A ) )
119, 10sylib 122 . . . . . . 7  |-  ( ph  ->  A  =  ( (
ZZ>= `  1 )  i^i 
A ) )
12 dfin5 3173 . . . . . . 7  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }
1311, 12eqtrdi 2254 . . . . . 6  |-  ( ph  ->  A  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } )
1413eleq2d 2275 . . . . 5  |-  ( ph  ->  ( a  e.  A  <->  a  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } ) )
1514biimpa 296 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
)
16 eleq1w 2266 . . . . . 6  |-  ( x  =  p  ->  (
x  e.  A  <->  p  e.  A ) )
1716dcbid 840 . . . . 5  |-  ( x  =  p  ->  (DECID  x  e.  A  <-> DECID  p  e.  A )
)
18 nninfdcex.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  A. x  e.  NN DECID  x  e.  A )
20 elfznn 10176 . . . . . 6  |-  ( p  e.  ( 1 ... a )  ->  p  e.  NN )
2120adantl 277 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  p  e.  NN )
2217, 19, 21rspcdva 2882 . . . 4  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  -> DECID  p  e.  A
)
235, 6, 15, 22infssuzex 10376 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2413raleqdv 2708 . . . . . 6  |-  ( ph  ->  ( A. y  e.  A  -.  y  < 
x  <->  A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x ) )
2513rexeqdv 2709 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) )
2625imbi2d 230 . . . . . . 7  |-  ( ph  ->  ( ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  ( x  < 
y  ->  E. z  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
z  <  y )
) )
2726ralbidv 2506 . . . . . 6  |-  ( ph  ->  ( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2824, 27anbi12d 473 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
2928rexbidv 2507 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3029adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3123, 30mpbird 167 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
324, 31exlimddv 1922 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    i^i cin 3165    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   1c1 7926    < clt 8107   NNcn 9036   ZZ>=cuz 9648   ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265
This theorem is referenced by:  nninfdclemp1  12821
  Copyright terms: Public domain W3C validator