ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex Unicode version

Theorem nninfdcex 10417
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a  |-  ( ph  ->  A  C_  NN )
nninfdcex.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdcex.m  |-  ( ph  ->  E. y  y  e.  A )
Assertion
Ref Expression
nninfdcex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y
Allowed substitution hint:    ph( z)

Proof of Theorem nninfdcex
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3  |-  ( ph  ->  E. y  y  e.  A )
2 eleq1w 2268 . . . 4  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
32cbvexv 1943 . . 3  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 1zzd 9434 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  1  e.  ZZ )
6 eqid 2207 . . . 4  |-  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }
7 nninfdcex.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 nnuz 9719 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
97, 8sseqtrdi 3249 . . . . . . . 8  |-  ( ph  ->  A  C_  ( ZZ>= ` 
1 ) )
10 dfss5 3386 . . . . . . . 8  |-  ( A 
C_  ( ZZ>= `  1
)  <->  A  =  (
( ZZ>= `  1 )  i^i  A ) )
119, 10sylib 122 . . . . . . 7  |-  ( ph  ->  A  =  ( (
ZZ>= `  1 )  i^i 
A ) )
12 dfin5 3181 . . . . . . 7  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }
1311, 12eqtrdi 2256 . . . . . 6  |-  ( ph  ->  A  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } )
1413eleq2d 2277 . . . . 5  |-  ( ph  ->  ( a  e.  A  <->  a  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } ) )
1514biimpa 296 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
)
16 eleq1w 2268 . . . . . 6  |-  ( x  =  p  ->  (
x  e.  A  <->  p  e.  A ) )
1716dcbid 840 . . . . 5  |-  ( x  =  p  ->  (DECID  x  e.  A  <-> DECID  p  e.  A )
)
18 nninfdcex.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1918ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  A. x  e.  NN DECID  x  e.  A )
20 elfznn 10211 . . . . . 6  |-  ( p  e.  ( 1 ... a )  ->  p  e.  NN )
2120adantl 277 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  p  e.  NN )
2217, 19, 21rspcdva 2889 . . . 4  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  -> DECID  p  e.  A
)
235, 6, 15, 22infssuzex 10413 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2413raleqdv 2711 . . . . . 6  |-  ( ph  ->  ( A. y  e.  A  -.  y  < 
x  <->  A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x ) )
2513rexeqdv 2712 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) )
2625imbi2d 230 . . . . . . 7  |-  ( ph  ->  ( ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  ( x  < 
y  ->  E. z  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
z  <  y )
) )
2726ralbidv 2508 . . . . . 6  |-  ( ph  ->  ( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2824, 27anbi12d 473 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
2928rexbidv 2509 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3029adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3123, 30mpbird 167 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
324, 31exlimddv 1923 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490    i^i cin 3173    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   1c1 7961    < clt 8142   NNcn 9071   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by:  nninfdclemp1  12936
  Copyright terms: Public domain W3C validator