ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex Unicode version

Theorem nninfdcex 11882
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a  |-  ( ph  ->  A  C_  NN )
nninfdcex.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdcex.m  |-  ( ph  ->  E. y  y  e.  A )
Assertion
Ref Expression
nninfdcex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y
Allowed substitution hint:    ph( z)

Proof of Theorem nninfdcex
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3  |-  ( ph  ->  E. y  y  e.  A )
2 eleq1w 2226 . . . 4  |-  ( y  =  a  ->  (
y  e.  A  <->  a  e.  A ) )
32cbvexv 1906 . . 3  |-  ( E. y  y  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 121 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 1zzd 9214 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  1  e.  ZZ )
6 eqid 2165 . . . 4  |-  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }
7 nninfdcex.a . . . . . . . . 9  |-  ( ph  ->  A  C_  NN )
8 nnuz 9497 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
97, 8sseqtrdi 3189 . . . . . . . 8  |-  ( ph  ->  A  C_  ( ZZ>= ` 
1 ) )
10 dfss5 3326 . . . . . . . 8  |-  ( A 
C_  ( ZZ>= `  1
)  <->  A  =  (
( ZZ>= `  1 )  i^i  A ) )
119, 10sylib 121 . . . . . . 7  |-  ( ph  ->  A  =  ( (
ZZ>= `  1 )  i^i 
A ) )
12 dfin5 3122 . . . . . . 7  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }
1311, 12eqtrdi 2214 . . . . . 6  |-  ( ph  ->  A  =  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } )
1413eleq2d 2235 . . . . 5  |-  ( ph  ->  ( a  e.  A  <->  a  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } ) )
1514biimpa 294 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
)
16 eleq1w 2226 . . . . . 6  |-  ( x  =  p  ->  (
x  e.  A  <->  p  e.  A ) )
1716dcbid 828 . . . . 5  |-  ( x  =  p  ->  (DECID  x  e.  A  <-> DECID  p  e.  A )
)
18 nninfdcex.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1918ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  A. x  e.  NN DECID  x  e.  A )
20 elfznn 9985 . . . . . 6  |-  ( p  e.  ( 1 ... a )  ->  p  e.  NN )
2120adantl 275 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  ->  p  e.  NN )
2217, 19, 21rspcdva 2834 . . . 4  |-  ( ( ( ph  /\  a  e.  A )  /\  p  e.  ( 1 ... a
) )  -> DECID  p  e.  A
)
235, 6, 15, 22infssuzex 11878 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2413raleqdv 2666 . . . . . 6  |-  ( ph  ->  ( A. y  e.  A  -.  y  < 
x  <->  A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x ) )
2513rexeqdv 2667 . . . . . . . 8  |-  ( ph  ->  ( E. z  e.  A  z  <  y  <->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) )
2625imbi2d 229 . . . . . . 7  |-  ( ph  ->  ( ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  ( x  < 
y  ->  E. z  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }
z  <  y )
) )
2726ralbidv 2465 . . . . . 6  |-  ( ph  ->  ( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) )
2824, 27anbi12d 465 . . . . 5  |-  ( ph  ->  ( ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
2928rexbidv 2466 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  { p  e.  (
ZZ>= `  1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3029adantr 274 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  {
p  e.  ( ZZ>= ` 
1 )  |  p  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { p  e.  ( ZZ>= `  1 )  |  p  e.  A } z  <  y
) ) ) )
3123, 30mpbird 166 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
324, 31exlimddv 1886 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2443   E.wrex 2444   {crab 2447    i^i cin 3114    C_ wss 3115   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   RRcr 7748   1c1 7750    < clt 7929   NNcn 8853   ZZ>=cuz 9462   ...cfz 9940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  nninfdclemp1  12379
  Copyright terms: Public domain W3C validator