| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suprzubdc | Unicode version | ||
| Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| suprzubdc.ss | 
 | 
| suprzubdc.dc | 
 | 
| suprzubdc.ub | 
 | 
| suprzubdc.b | 
 | 
| Ref | Expression | 
|---|---|
| suprzubdc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suprzubdc.ub | 
. . 3
 | |
| 2 | breq2 4037 | 
. . . . 5
 | |
| 3 | 2 | ralbidv 2497 | 
. . . 4
 | 
| 4 | 3 | cbvrexv 2730 | 
. . 3
 | 
| 5 | 1, 4 | sylib 122 | 
. 2
 | 
| 6 | dfin5 3164 | 
. . . . . . 7
 | |
| 7 | suprzubdc.ss | 
. . . . . . . 8
 | |
| 8 | sseqin2 3382 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | sylib 122 | 
. . . . . . 7
 | 
| 10 | 6, 9 | eqtr3id 2243 | 
. . . . . 6
 | 
| 11 | 10 | supeq1d 7053 | 
. . . . 5
 | 
| 12 | 11 | adantr 276 | 
. . . 4
 | 
| 13 | suprzubdc.b | 
. . . . . . 7
 | |
| 14 | 7, 13 | sseldd 3184 | 
. . . . . 6
 | 
| 15 | 14 | adantr 276 | 
. . . . 5
 | 
| 16 | eleq1 2259 | 
. . . . 5
 | |
| 17 | 13 | adantr 276 | 
. . . . 5
 | 
| 18 | eleq1w 2257 | 
. . . . . . 7
 | |
| 19 | 18 | dcbid 839 | 
. . . . . 6
 | 
| 20 | suprzubdc.dc | 
. . . . . . 7
 | |
| 21 | 20 | ad2antrr 488 | 
. . . . . 6
 | 
| 22 | eluzelz 9610 | 
. . . . . . 7
 | |
| 23 | 22 | adantl 277 | 
. . . . . 6
 | 
| 24 | 19, 21, 23 | rspcdva 2873 | 
. . . . 5
 | 
| 25 | simprl 529 | 
. . . . . . . 8
 | |
| 26 | 25 | peano2zd 9451 | 
. . . . . . 7
 | 
| 27 | 15 | zred 9448 | 
. . . . . . . 8
 | 
| 28 | 25 | zred 9448 | 
. . . . . . . 8
 | 
| 29 | 26 | zred 9448 | 
. . . . . . . 8
 | 
| 30 | breq1 4036 | 
. . . . . . . . 9
 | |
| 31 | simprr 531 | 
. . . . . . . . 9
 | |
| 32 | 30, 31, 17 | rspcdva 2873 | 
. . . . . . . 8
 | 
| 33 | 28 | lep1d 8958 | 
. . . . . . . 8
 | 
| 34 | 27, 28, 29, 32, 33 | letrd 8150 | 
. . . . . . 7
 | 
| 35 | eluz2 9607 | 
. . . . . . 7
 | |
| 36 | 15, 26, 34, 35 | syl3anbrc 1183 | 
. . . . . 6
 | 
| 37 | eluzle 9613 | 
. . . . . . . . . 10
 | |
| 38 | 37 | ad2antlr 489 | 
. . . . . . . . 9
 | 
| 39 | 25 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 40 | eluzelz 9610 | 
. . . . . . . . . . 11
 | |
| 41 | 40 | ad2antlr 489 | 
. . . . . . . . . 10
 | 
| 42 | zltp1le 9380 | 
. . . . . . . . . 10
 | |
| 43 | 39, 41, 42 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 44 | 38, 43 | mpbird 167 | 
. . . . . . . 8
 | 
| 45 | 41 | zred 9448 | 
. . . . . . . . 9
 | 
| 46 | 28 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 47 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 48 | 31 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 49 | simpr 110 | 
. . . . . . . . . 10
 | |
| 50 | 47, 48, 49 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 51 | 45, 46, 50 | lensymd 8148 | 
. . . . . . . 8
 | 
| 52 | 44, 51 | pm2.65da 662 | 
. . . . . . 7
 | 
| 53 | 52 | ralrimiva 2570 | 
. . . . . 6
 | 
| 54 | fveq2 5558 | 
. . . . . . . 8
 | |
| 55 | 54 | raleqdv 2699 | 
. . . . . . 7
 | 
| 56 | 55 | rspcev 2868 | 
. . . . . 6
 | 
| 57 | 36, 53, 56 | syl2anc 411 | 
. . . . 5
 | 
| 58 | 15, 16, 17, 24, 57 | zsupcl 10321 | 
. . . 4
 | 
| 59 | 12, 58 | eqeltrrd 2274 | 
. . 3
 | 
| 60 | eluzle 9613 | 
. . 3
 | |
| 61 | 59, 60 | syl 14 | 
. 2
 | 
| 62 | 5, 61 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 | 
| This theorem is referenced by: pcprendvds 12459 pcpremul 12462 | 
| Copyright terms: Public domain | W3C validator |