| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzubdc | Unicode version | ||
| Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| suprzubdc.ss |
|
| suprzubdc.dc |
|
| suprzubdc.ub |
|
| suprzubdc.b |
|
| Ref | Expression |
|---|---|
| suprzubdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprzubdc.ub |
. . 3
| |
| 2 | breq2 4048 |
. . . . 5
| |
| 3 | 2 | ralbidv 2506 |
. . . 4
|
| 4 | 3 | cbvrexv 2739 |
. . 3
|
| 5 | 1, 4 | sylib 122 |
. 2
|
| 6 | dfin5 3173 |
. . . . . . 7
| |
| 7 | suprzubdc.ss |
. . . . . . . 8
| |
| 8 | sseqin2 3392 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . 7
|
| 10 | 6, 9 | eqtr3id 2252 |
. . . . . 6
|
| 11 | 10 | supeq1d 7089 |
. . . . 5
|
| 12 | 11 | adantr 276 |
. . . 4
|
| 13 | suprzubdc.b |
. . . . . . 7
| |
| 14 | 7, 13 | sseldd 3194 |
. . . . . 6
|
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | eleq1 2268 |
. . . . 5
| |
| 17 | 13 | adantr 276 |
. . . . 5
|
| 18 | eleq1w 2266 |
. . . . . . 7
| |
| 19 | 18 | dcbid 840 |
. . . . . 6
|
| 20 | suprzubdc.dc |
. . . . . . 7
| |
| 21 | 20 | ad2antrr 488 |
. . . . . 6
|
| 22 | eluzelz 9657 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 19, 21, 23 | rspcdva 2882 |
. . . . 5
|
| 25 | simprl 529 |
. . . . . . . 8
| |
| 26 | 25 | peano2zd 9498 |
. . . . . . 7
|
| 27 | 15 | zred 9495 |
. . . . . . . 8
|
| 28 | 25 | zred 9495 |
. . . . . . . 8
|
| 29 | 26 | zred 9495 |
. . . . . . . 8
|
| 30 | breq1 4047 |
. . . . . . . . 9
| |
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 30, 31, 17 | rspcdva 2882 |
. . . . . . . 8
|
| 33 | 28 | lep1d 9004 |
. . . . . . . 8
|
| 34 | 27, 28, 29, 32, 33 | letrd 8196 |
. . . . . . 7
|
| 35 | eluz2 9654 |
. . . . . . 7
| |
| 36 | 15, 26, 34, 35 | syl3anbrc 1184 |
. . . . . 6
|
| 37 | eluzle 9660 |
. . . . . . . . . 10
| |
| 38 | 37 | ad2antlr 489 |
. . . . . . . . 9
|
| 39 | 25 | ad2antrr 488 |
. . . . . . . . . 10
|
| 40 | eluzelz 9657 |
. . . . . . . . . . 11
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . 10
|
| 42 | zltp1le 9427 |
. . . . . . . . . 10
| |
| 43 | 39, 41, 42 | syl2anc 411 |
. . . . . . . . 9
|
| 44 | 38, 43 | mpbird 167 |
. . . . . . . 8
|
| 45 | 41 | zred 9495 |
. . . . . . . . 9
|
| 46 | 28 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | breq1 4047 |
. . . . . . . . . 10
| |
| 48 | 31 | ad2antrr 488 |
. . . . . . . . . 10
|
| 49 | simpr 110 |
. . . . . . . . . 10
| |
| 50 | 47, 48, 49 | rspcdva 2882 |
. . . . . . . . 9
|
| 51 | 45, 46, 50 | lensymd 8194 |
. . . . . . . 8
|
| 52 | 44, 51 | pm2.65da 663 |
. . . . . . 7
|
| 53 | 52 | ralrimiva 2579 |
. . . . . 6
|
| 54 | fveq2 5576 |
. . . . . . . 8
| |
| 55 | 54 | raleqdv 2708 |
. . . . . . 7
|
| 56 | 55 | rspcev 2877 |
. . . . . 6
|
| 57 | 36, 53, 56 | syl2anc 411 |
. . . . 5
|
| 58 | 15, 16, 17, 24, 57 | zsupcl 10374 |
. . . 4
|
| 59 | 12, 58 | eqeltrrd 2283 |
. . 3
|
| 60 | eluzle 9660 |
. . 3
| |
| 61 | 59, 60 | syl 14 |
. 2
|
| 62 | 5, 61 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 |
| This theorem is referenced by: pcprendvds 12613 pcpremul 12616 |
| Copyright terms: Public domain | W3C validator |