| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzubdc | Unicode version | ||
| Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| suprzubdc.ss |
|
| suprzubdc.dc |
|
| suprzubdc.ub |
|
| suprzubdc.b |
|
| Ref | Expression |
|---|---|
| suprzubdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprzubdc.ub |
. . 3
| |
| 2 | breq2 4086 |
. . . . 5
| |
| 3 | 2 | ralbidv 2530 |
. . . 4
|
| 4 | 3 | cbvrexv 2766 |
. . 3
|
| 5 | 1, 4 | sylib 122 |
. 2
|
| 6 | dfin5 3204 |
. . . . . . 7
| |
| 7 | suprzubdc.ss |
. . . . . . . 8
| |
| 8 | sseqin2 3423 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . 7
|
| 10 | 6, 9 | eqtr3id 2276 |
. . . . . 6
|
| 11 | 10 | supeq1d 7150 |
. . . . 5
|
| 12 | 11 | adantr 276 |
. . . 4
|
| 13 | suprzubdc.b |
. . . . . . 7
| |
| 14 | 7, 13 | sseldd 3225 |
. . . . . 6
|
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | eleq1 2292 |
. . . . 5
| |
| 17 | 13 | adantr 276 |
. . . . 5
|
| 18 | eleq1w 2290 |
. . . . . . 7
| |
| 19 | 18 | dcbid 843 |
. . . . . 6
|
| 20 | suprzubdc.dc |
. . . . . . 7
| |
| 21 | 20 | ad2antrr 488 |
. . . . . 6
|
| 22 | eluzelz 9727 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 19, 21, 23 | rspcdva 2912 |
. . . . 5
|
| 25 | simprl 529 |
. . . . . . . 8
| |
| 26 | 25 | peano2zd 9568 |
. . . . . . 7
|
| 27 | 15 | zred 9565 |
. . . . . . . 8
|
| 28 | 25 | zred 9565 |
. . . . . . . 8
|
| 29 | 26 | zred 9565 |
. . . . . . . 8
|
| 30 | breq1 4085 |
. . . . . . . . 9
| |
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 30, 31, 17 | rspcdva 2912 |
. . . . . . . 8
|
| 33 | 28 | lep1d 9074 |
. . . . . . . 8
|
| 34 | 27, 28, 29, 32, 33 | letrd 8266 |
. . . . . . 7
|
| 35 | eluz2 9724 |
. . . . . . 7
| |
| 36 | 15, 26, 34, 35 | syl3anbrc 1205 |
. . . . . 6
|
| 37 | eluzle 9730 |
. . . . . . . . . 10
| |
| 38 | 37 | ad2antlr 489 |
. . . . . . . . 9
|
| 39 | 25 | ad2antrr 488 |
. . . . . . . . . 10
|
| 40 | eluzelz 9727 |
. . . . . . . . . . 11
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . 10
|
| 42 | zltp1le 9497 |
. . . . . . . . . 10
| |
| 43 | 39, 41, 42 | syl2anc 411 |
. . . . . . . . 9
|
| 44 | 38, 43 | mpbird 167 |
. . . . . . . 8
|
| 45 | 41 | zred 9565 |
. . . . . . . . 9
|
| 46 | 28 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | breq1 4085 |
. . . . . . . . . 10
| |
| 48 | 31 | ad2antrr 488 |
. . . . . . . . . 10
|
| 49 | simpr 110 |
. . . . . . . . . 10
| |
| 50 | 47, 48, 49 | rspcdva 2912 |
. . . . . . . . 9
|
| 51 | 45, 46, 50 | lensymd 8264 |
. . . . . . . 8
|
| 52 | 44, 51 | pm2.65da 665 |
. . . . . . 7
|
| 53 | 52 | ralrimiva 2603 |
. . . . . 6
|
| 54 | fveq2 5626 |
. . . . . . . 8
| |
| 55 | 54 | raleqdv 2734 |
. . . . . . 7
|
| 56 | 55 | rspcev 2907 |
. . . . . 6
|
| 57 | 36, 53, 56 | syl2anc 411 |
. . . . 5
|
| 58 | 15, 16, 17, 24, 57 | zsupcl 10446 |
. . . 4
|
| 59 | 12, 58 | eqeltrrd 2307 |
. . 3
|
| 60 | eluzle 9730 |
. . 3
| |
| 61 | 59, 60 | syl 14 |
. 2
|
| 62 | 5, 61 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: pcprendvds 12808 pcpremul 12811 |
| Copyright terms: Public domain | W3C validator |