Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suprzubdc | Unicode version |
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
Ref | Expression |
---|---|
suprzubdc.ss | |
suprzubdc.dc | DECID |
suprzubdc.ub | |
suprzubdc.b |
Ref | Expression |
---|---|
suprzubdc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprzubdc.ub | . . 3 | |
2 | breq2 3991 | . . . . 5 | |
3 | 2 | ralbidv 2470 | . . . 4 |
4 | 3 | cbvrexv 2697 | . . 3 |
5 | 1, 4 | sylib 121 | . 2 |
6 | dfin5 3128 | . . . . . . 7 | |
7 | suprzubdc.ss | . . . . . . . 8 | |
8 | sseqin2 3346 | . . . . . . . 8 | |
9 | 7, 8 | sylib 121 | . . . . . . 7 |
10 | 6, 9 | eqtr3id 2217 | . . . . . 6 |
11 | 10 | supeq1d 6960 | . . . . 5 |
12 | 11 | adantr 274 | . . . 4 |
13 | suprzubdc.b | . . . . . . 7 | |
14 | 7, 13 | sseldd 3148 | . . . . . 6 |
15 | 14 | adantr 274 | . . . . 5 |
16 | eleq1 2233 | . . . . 5 | |
17 | 13 | adantr 274 | . . . . 5 |
18 | eleq1w 2231 | . . . . . . 7 | |
19 | 18 | dcbid 833 | . . . . . 6 DECID DECID |
20 | suprzubdc.dc | . . . . . . 7 DECID | |
21 | 20 | ad2antrr 485 | . . . . . 6 DECID |
22 | eluzelz 9483 | . . . . . . 7 | |
23 | 22 | adantl 275 | . . . . . 6 |
24 | 19, 21, 23 | rspcdva 2839 | . . . . 5 DECID |
25 | simprl 526 | . . . . . . . 8 | |
26 | 25 | peano2zd 9324 | . . . . . . 7 |
27 | 15 | zred 9321 | . . . . . . . 8 |
28 | 25 | zred 9321 | . . . . . . . 8 |
29 | 26 | zred 9321 | . . . . . . . 8 |
30 | breq1 3990 | . . . . . . . . 9 | |
31 | simprr 527 | . . . . . . . . 9 | |
32 | 30, 31, 17 | rspcdva 2839 | . . . . . . . 8 |
33 | 28 | lep1d 8834 | . . . . . . . 8 |
34 | 27, 28, 29, 32, 33 | letrd 8030 | . . . . . . 7 |
35 | eluz2 9480 | . . . . . . 7 | |
36 | 15, 26, 34, 35 | syl3anbrc 1176 | . . . . . 6 |
37 | eluzle 9486 | . . . . . . . . . 10 | |
38 | 37 | ad2antlr 486 | . . . . . . . . 9 |
39 | 25 | ad2antrr 485 | . . . . . . . . . 10 |
40 | eluzelz 9483 | . . . . . . . . . . 11 | |
41 | 40 | ad2antlr 486 | . . . . . . . . . 10 |
42 | zltp1le 9253 | . . . . . . . . . 10 | |
43 | 39, 41, 42 | syl2anc 409 | . . . . . . . . 9 |
44 | 38, 43 | mpbird 166 | . . . . . . . 8 |
45 | 41 | zred 9321 | . . . . . . . . 9 |
46 | 28 | ad2antrr 485 | . . . . . . . . 9 |
47 | breq1 3990 | . . . . . . . . . 10 | |
48 | 31 | ad2antrr 485 | . . . . . . . . . 10 |
49 | simpr 109 | . . . . . . . . . 10 | |
50 | 47, 48, 49 | rspcdva 2839 | . . . . . . . . 9 |
51 | 45, 46, 50 | lensymd 8028 | . . . . . . . 8 |
52 | 44, 51 | pm2.65da 656 | . . . . . . 7 |
53 | 52 | ralrimiva 2543 | . . . . . 6 |
54 | fveq2 5494 | . . . . . . . 8 | |
55 | 54 | raleqdv 2671 | . . . . . . 7 |
56 | 55 | rspcev 2834 | . . . . . 6 |
57 | 36, 53, 56 | syl2anc 409 | . . . . 5 |
58 | 15, 16, 17, 24, 57 | zsupcl 11889 | . . . 4 |
59 | 12, 58 | eqeltrrd 2248 | . . 3 |
60 | eluzle 9486 | . . 3 | |
61 | 59, 60 | syl 14 | . 2 |
62 | 5, 61 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cin 3120 wss 3121 class class class wbr 3987 cfv 5196 (class class class)co 5850 csup 6955 cr 7760 c1 7762 caddc 7764 clt 7941 cle 7942 cz 9199 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-sup 6957 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-fz 9953 df-fzo 10086 |
This theorem is referenced by: pcprendvds 12231 pcpremul 12234 |
Copyright terms: Public domain | W3C validator |