ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzubdc Unicode version

Theorem suprzubdc 11894
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
suprzubdc.ss  |-  ( ph  ->  A  C_  ZZ )
suprzubdc.dc  |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )
suprzubdc.ub  |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
suprzubdc.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
suprzubdc  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable groups:    y, A, x   
y, B
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem suprzubdc
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprzubdc.ub . . 3  |-  ( ph  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
2 breq2 3991 . . . . 5  |-  ( x  =  u  ->  (
y  <_  x  <->  y  <_  u ) )
32ralbidv 2470 . . . 4  |-  ( x  =  u  ->  ( A. y  e.  A  y  <_  x  <->  A. y  e.  A  y  <_  u ) )
43cbvrexv 2697 . . 3  |-  ( E. x  e.  ZZ  A. y  e.  A  y  <_  x  <->  E. u  e.  ZZ  A. y  e.  A  y  <_  u )
51, 4sylib 121 . 2  |-  ( ph  ->  E. u  e.  ZZ  A. y  e.  A  y  <_  u )
6 dfin5 3128 . . . . . . 7  |-  ( ZZ 
i^i  A )  =  { z  e.  ZZ  |  z  e.  A }
7 suprzubdc.ss . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
8 sseqin2 3346 . . . . . . . 8  |-  ( A 
C_  ZZ  <->  ( ZZ  i^i  A )  =  A )
97, 8sylib 121 . . . . . . 7  |-  ( ph  ->  ( ZZ  i^i  A
)  =  A )
106, 9eqtr3id 2217 . . . . . 6  |-  ( ph  ->  { z  e.  ZZ  |  z  e.  A }  =  A )
1110supeq1d 6960 . . . . 5  |-  ( ph  ->  sup ( { z  e.  ZZ  |  z  e.  A } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
1211adantr 274 . . . 4  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  sup ( { z  e.  ZZ  |  z  e.  A } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
13 suprzubdc.b . . . . . . 7  |-  ( ph  ->  B  e.  A )
147, 13sseldd 3148 . . . . . 6  |-  ( ph  ->  B  e.  ZZ )
1514adantr 274 . . . . 5  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  e.  ZZ )
16 eleq1 2233 . . . . 5  |-  ( z  =  B  ->  (
z  e.  A  <->  B  e.  A ) )
1713adantr 274 . . . . 5  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  e.  A )
18 eleq1w 2231 . . . . . . 7  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
1918dcbid 833 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
20 suprzubdc.dc . . . . . . 7  |-  ( ph  ->  A. x  e.  ZZ DECID  x  e.  A )
2120ad2antrr 485 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  B ) )  ->  A. x  e.  ZZ DECID  x  e.  A )
22 eluzelz 9483 . . . . . . 7  |-  ( z  e.  ( ZZ>= `  B
)  ->  z  e.  ZZ )
2322adantl 275 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  B ) )  ->  z  e.  ZZ )
2419, 21, 23rspcdva 2839 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  B ) )  -> DECID 
z  e.  A )
25 simprl 526 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  u  e.  ZZ )
2625peano2zd 9324 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  (
u  +  1 )  e.  ZZ )
2715zred 9321 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  e.  RR )
2825zred 9321 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  u  e.  RR )
2926zred 9321 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  (
u  +  1 )  e.  RR )
30 breq1 3990 . . . . . . . . 9  |-  ( y  =  B  ->  (
y  <_  u  <->  B  <_  u ) )
31 simprr 527 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  A. y  e.  A  y  <_  u )
3230, 31, 17rspcdva 2839 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  <_  u )
3328lep1d 8834 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  u  <_  ( u  +  1 ) )
3427, 28, 29, 32, 33letrd 8030 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  <_  ( u  +  1 ) )
35 eluz2 9480 . . . . . . 7  |-  ( ( u  +  1 )  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  ( u  +  1 )  e.  ZZ  /\  B  <_ 
( u  +  1 ) ) )
3615, 26, 34, 35syl3anbrc 1176 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  (
u  +  1 )  e.  ( ZZ>= `  B
) )
37 eluzle 9486 . . . . . . . . . 10  |-  ( z  e.  ( ZZ>= `  (
u  +  1 ) )  ->  ( u  +  1 )  <_ 
z )
3837ad2antlr 486 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  ( u  +  1 )  <_ 
z )
3925ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  u  e.  ZZ )
40 eluzelz 9483 . . . . . . . . . . 11  |-  ( z  e.  ( ZZ>= `  (
u  +  1 ) )  ->  z  e.  ZZ )
4140ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  z  e.  ZZ )
42 zltp1le 9253 . . . . . . . . . 10  |-  ( ( u  e.  ZZ  /\  z  e.  ZZ )  ->  ( u  <  z  <->  ( u  +  1 )  <_  z ) )
4339, 41, 42syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  ( u  <  z  <->  ( u  + 
1 )  <_  z
) )
4438, 43mpbird 166 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  u  <  z )
4541zred 9321 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  z  e.  RR )
4628ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  u  e.  RR )
47 breq1 3990 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  <_  u  <->  z  <_  u ) )
4831ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  A. y  e.  A  y  <_  u )
49 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  z  e.  A )
5047, 48, 49rspcdva 2839 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  z  <_  u )
5145, 46, 50lensymd 8028 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\ 
A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  /\  z  e.  A
)  ->  -.  u  <  z )
5244, 51pm2.65da 656 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  /\  z  e.  (
ZZ>= `  ( u  + 
1 ) ) )  ->  -.  z  e.  A )
5352ralrimiva 2543 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  A. z  e.  ( ZZ>= `  ( u  +  1 ) )  -.  z  e.  A
)
54 fveq2 5494 . . . . . . . 8  |-  ( v  =  ( u  + 
1 )  ->  ( ZZ>=
`  v )  =  ( ZZ>= `  ( u  +  1 ) ) )
5554raleqdv 2671 . . . . . . 7  |-  ( v  =  ( u  + 
1 )  ->  ( A. z  e.  ( ZZ>=
`  v )  -.  z  e.  A  <->  A. z  e.  ( ZZ>= `  ( u  +  1 ) )  -.  z  e.  A
) )
5655rspcev 2834 . . . . . 6  |-  ( ( ( u  +  1 )  e.  ( ZZ>= `  B )  /\  A. z  e.  ( ZZ>= `  ( u  +  1
) )  -.  z  e.  A )  ->  E. v  e.  ( ZZ>= `  B ) A. z  e.  ( ZZ>=
`  v )  -.  z  e.  A )
5736, 53, 56syl2anc 409 . . . . 5  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  E. v  e.  ( ZZ>= `  B ) A. z  e.  ( ZZ>=
`  v )  -.  z  e.  A )
5815, 16, 17, 24, 57zsupcl 11889 . . . 4  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  sup ( { z  e.  ZZ  |  z  e.  A } ,  RR ,  <  )  e.  ( ZZ>= `  B ) )
5912, 58eqeltrrd 2248 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  sup ( A ,  RR ,  <  )  e.  ( ZZ>= `  B ) )
60 eluzle 9486 . . 3  |-  ( sup ( A ,  RR ,  <  )  e.  (
ZZ>= `  B )  ->  B  <_  sup ( A ,  RR ,  <  ) )
6159, 60syl 14 . 2  |-  ( (
ph  /\  ( u  e.  ZZ  /\  A. y  e.  A  y  <_  u ) )  ->  B  <_  sup ( A ,  RR ,  <  ) )
625, 61rexlimddv 2592 1  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    i^i cin 3120    C_ wss 3121   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   supcsup 6955   RRcr 7760   1c1 7762    + caddc 7764    < clt 7941    <_ cle 7942   ZZcz 9199   ZZ>=cuz 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086
This theorem is referenced by:  pcprendvds  12231  pcpremul  12234
  Copyright terms: Public domain W3C validator