ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnminle Unicode version

Theorem nnminle 12556
Description: The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12555. (Contributed by Jim Kingdon, 26-Sep-2024.)
Assertion
Ref Expression
nnminle  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem nnminle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 dfss5 3409 . . . . . 6  |-  ( A 
C_  NN  <->  A  =  ( NN  i^i  A ) )
21biimpi 120 . . . . 5  |-  ( A 
C_  NN  ->  A  =  ( NN  i^i  A
) )
3 nnuz 9758 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
43ineq1i 3401 . . . . . 6  |-  ( NN 
i^i  A )  =  ( ( ZZ>= `  1
)  i^i  A )
5 dfin5 3204 . . . . . 6  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
n  e.  ( ZZ>= ` 
1 )  |  n  e.  A }
64, 5eqtri 2250 . . . . 5  |-  ( NN 
i^i  A )  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
72, 6eqtrdi 2278 . . . 4  |-  ( A 
C_  NN  ->  A  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
873ad2ant1 1042 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  A  =  { n  e.  ( ZZ>=
`  1 )  |  n  e.  A }
)
98infeq1d 7179 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  = inf ( { n  e.  ( ZZ>= `  1 )  |  n  e.  A } ,  RR ,  <  ) )
10 1zzd 9473 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  1  e.  ZZ )
11 eqid 2229 . . 3  |-  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }  =  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }
12 simp3 1023 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  B  e.  A )
1312, 8eleqtrd 2308 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  B  e.  { n  e.  ( ZZ>= ` 
1 )  |  n  e.  A } )
14 eleq1w 2290 . . . . 5  |-  ( x  =  n  ->  (
x  e.  A  <->  n  e.  A ) )
1514dcbid 843 . . . 4  |-  ( x  =  n  ->  (DECID  x  e.  A  <-> DECID  n  e.  A )
)
16 simpl2 1025 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  ->  A. x  e.  NN DECID  x  e.  A )
17 elfznn 10250 . . . . 5  |-  ( n  e.  ( 1 ... B )  ->  n  e.  NN )
1817adantl 277 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  ->  n  e.  NN )
1915, 16, 18rspcdva 2912 . . 3  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  -> DECID  n  e.  A
)
2010, 11, 13, 19infssuzledc 10454 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( {
n  e.  ( ZZ>= ` 
1 )  |  n  e.  A } ,  RR ,  <  )  <_  B )
219, 20eqbrtrd 4105 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    i^i cin 3196    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001  infcinf 7150   RRcr 7998   1c1 8000    < clt 8181    <_ cle 8182   NNcn 9110   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  nnwodc  12557
  Copyright terms: Public domain W3C validator