ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnminle Unicode version

Theorem nnminle 12471
Description: The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12470. (Contributed by Jim Kingdon, 26-Sep-2024.)
Assertion
Ref Expression
nnminle  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem nnminle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 dfss5 3386 . . . . . 6  |-  ( A 
C_  NN  <->  A  =  ( NN  i^i  A ) )
21biimpi 120 . . . . 5  |-  ( A 
C_  NN  ->  A  =  ( NN  i^i  A
) )
3 nnuz 9719 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
43ineq1i 3378 . . . . . 6  |-  ( NN 
i^i  A )  =  ( ( ZZ>= `  1
)  i^i  A )
5 dfin5 3181 . . . . . 6  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
n  e.  ( ZZ>= ` 
1 )  |  n  e.  A }
64, 5eqtri 2228 . . . . 5  |-  ( NN 
i^i  A )  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
72, 6eqtrdi 2256 . . . 4  |-  ( A 
C_  NN  ->  A  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
873ad2ant1 1021 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  A  =  { n  e.  ( ZZ>=
`  1 )  |  n  e.  A }
)
98infeq1d 7140 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  = inf ( { n  e.  ( ZZ>= `  1 )  |  n  e.  A } ,  RR ,  <  ) )
10 1zzd 9434 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  1  e.  ZZ )
11 eqid 2207 . . 3  |-  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }  =  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }
12 simp3 1002 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  B  e.  A )
1312, 8eleqtrd 2286 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  ->  B  e.  { n  e.  ( ZZ>= ` 
1 )  |  n  e.  A } )
14 eleq1w 2268 . . . . 5  |-  ( x  =  n  ->  (
x  e.  A  <->  n  e.  A ) )
1514dcbid 840 . . . 4  |-  ( x  =  n  ->  (DECID  x  e.  A  <-> DECID  n  e.  A )
)
16 simpl2 1004 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  ->  A. x  e.  NN DECID  x  e.  A )
17 elfznn 10211 . . . . 5  |-  ( n  e.  ( 1 ... B )  ->  n  e.  NN )
1817adantl 277 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  ->  n  e.  NN )
1915, 16, 18rspcdva 2889 . . 3  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  B  e.  A )  /\  n  e.  ( 1 ... B
) )  -> DECID  n  e.  A
)
2010, 11, 13, 19infssuzledc 10414 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( {
n  e.  ( ZZ>= ` 
1 )  |  n  e.  A } ,  RR ,  <  )  <_  B )
219, 20eqbrtrd 4081 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  B  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490    i^i cin 3173    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967  infcinf 7111   RRcr 7959   1c1 7961    < clt 8142    <_ cle 8143   NNcn 9071   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300
This theorem is referenced by:  nnwodc  12472
  Copyright terms: Public domain W3C validator