ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen Unicode version

Theorem znnen 11945
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3351 . . 3  |-  ( { z  e.  ZZ  | 
z  e.  NN }  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
2 nnssz 9094 . . . . . 6  |-  NN  C_  ZZ
3 dfss1 3284 . . . . . 6  |-  ( NN  C_  ZZ  <->  ( ZZ  i^i  NN )  =  NN )
42, 3mpbi 144 . . . . 5  |-  ( ZZ 
i^i  NN )  =  NN
5 dfin5 3082 . . . . 5  |-  ( ZZ 
i^i  NN )  =  {
z  e.  ZZ  | 
z  e.  NN }
64, 5eqtr3i 2163 . . . 4  |-  NN  =  { z  e.  ZZ  |  z  e.  NN }
76uneq1i 3230 . . 3  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  ( { z  e.  ZZ  |  z  e.  NN }  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)
8 rabid2 2610 . . . 4  |-  ( ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }  <->  A. z  e.  ZZ  ( z  e.  NN  \/  -u z  e.  NN0 ) )
9 elznn 9093 . . . . 5  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN  \/  -u z  e.  NN0 ) ) )
109simprbi 273 . . . 4  |-  ( z  e.  ZZ  ->  (
z  e.  NN  \/  -u z  e.  NN0 )
)
118, 10mprgbir 2493 . . 3  |-  ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
121, 7, 113eqtr4ri 2172 . 2  |-  ZZ  =  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )
13 nnex 8749 . . . 4  |-  NN  e.  _V
1413enref 6666 . . 3  |-  NN  ~~  NN
15 zex 9086 . . . . . 6  |-  ZZ  e.  _V
1615rabex 4079 . . . . 5  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  e.  _V
17 nn0ex 9006 . . . . 5  |-  NN0  e.  _V
18 negeq 7978 . . . . . . . 8  |-  ( z  =  x  ->  -u z  =  -u x )
1918eleq1d 2209 . . . . . . 7  |-  ( z  =  x  ->  ( -u z  e.  NN0  <->  -u x  e. 
NN0 ) )
2019elrab 2843 . . . . . 6  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  <->  ( x  e.  ZZ  /\  -u x  e.  NN0 ) )
2120simprbi 273 . . . . 5  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  -u x  e.  NN0 )
22 negeq 7978 . . . . . . 7  |-  ( z  =  -u y  ->  -u z  =  -u -u y )
2322eleq1d 2209 . . . . . 6  |-  ( z  =  -u y  ->  ( -u z  e.  NN0  <->  -u -u y  e.  NN0 ) )
24 nn0negz 9111 . . . . . 6  |-  ( y  e.  NN0  ->  -u y  e.  ZZ )
25 nn0cn 9010 . . . . . . . . 9  |-  ( y  e.  NN0  ->  y  e.  CC )
2625negnegd 8087 . . . . . . . 8  |-  ( y  e.  NN0  ->  -u -u y  =  y )
2726eleq1d 2209 . . . . . . 7  |-  ( y  e.  NN0  ->  ( -u -u y  e.  NN0  <->  y  e.  NN0 ) )
2827ibir 176 . . . . . 6  |-  ( y  e.  NN0  ->  -u -u y  e.  NN0 )
2923, 24, 28elrabd 2845 . . . . 5  |-  ( y  e.  NN0  ->  -u y  e.  { z  e.  ZZ  |  -u z  e.  NN0 } )
30 elrabi 2840 . . . . . . . 8  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  x  e.  ZZ )
3130adantr 274 . . . . . . 7  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  ZZ )
3231zcnd 9197 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  CC )
3325adantl 275 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
y  e.  CC )
34 negcon2 8038 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3532, 33, 34syl2anc 409 . . . . 5  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
3616, 17, 21, 29, 35en3i 6672 . . . 4  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN0
37 nn0ennn 10236 . . . 4  |-  NN0  ~~  NN
3836, 37entri 6687 . . 3  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN
39 inrab2 3353 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  {
z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }
40 incom 3272 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  ( NN  i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )
41 rabeq0 3396 . . . . 5  |-  ( { z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }  =  (/)  <->  A. z  e.  ( ZZ 
i^i  NN )  -.  -u z  e.  NN0 )
42 0red 7790 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  e.  RR )
43 simpl 108 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  NN )
4443nnred 8756 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  RR )
45 nngt0 8768 . . . . . . . . 9  |-  ( z  e.  NN  ->  0  <  z )
4645adantr 274 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  z )
47 nn0ge0 9025 . . . . . . . . . 10  |-  ( -u z  e.  NN0  ->  0  <_ 
-u z )
4847adantl 275 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <_  -u z )
4944le0neg1d 8302 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  ( z  <_  0  <->  0  <_  -u z ) )
5048, 49mpbird 166 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  <_  0 )
5142, 44, 42, 46, 50ltletrd 8208 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  0 )
5242ltnrd 7898 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  -.  0  <  0
)
5351, 52pm2.65da 651 . . . . . 6  |-  ( z  e.  NN  ->  -.  -u z  e.  NN0 )
5453, 4eleq2s 2235 . . . . 5  |-  ( z  e.  ( ZZ  i^i  NN )  ->  -.  -u z  e.  NN0 )
5541, 54mprgbir 2493 . . . 4  |-  { z  e.  ( ZZ  i^i  NN )  |  -u z  e.  NN0 }  =  (/)
5639, 40, 553eqtr3i 2169 . . 3  |-  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/)
57 unennn 11944 . . 3  |-  ( ( NN  ~~  NN  /\  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN  /\  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/) )  -> 
( NN  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)  ~~  NN )
5814, 38, 56, 57mp3an 1316 . 2  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  ~~  NN
5912, 58eqbrtri 3956 1  |-  ZZ  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   {crab 2421    u. cun 3073    i^i cin 3074    C_ wss 3075   (/)c0 3367   class class class wbr 3936    ~~ cen 6639   CCcc 7641   RRcr 7642   0cc0 7643    < clt 7823    <_ cle 7824   -ucneg 7957   NNcn 8743   NN0cn0 9000   ZZcz 9077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-er 6436  df-en 6642  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-n0 9001  df-z 9078  df-q 9438  df-rp 9470  df-fl 10073  df-mod 10126  df-dvds 11528
This theorem is referenced by:  qnnen  11978
  Copyright terms: Public domain W3C validator