ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen Unicode version

Theorem znnen 12331
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3393 . . 3  |-  ( { z  e.  ZZ  | 
z  e.  NN }  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
2 nnssz 9208 . . . . . 6  |-  NN  C_  ZZ
3 dfss1 3326 . . . . . 6  |-  ( NN  C_  ZZ  <->  ( ZZ  i^i  NN )  =  NN )
42, 3mpbi 144 . . . . 5  |-  ( ZZ 
i^i  NN )  =  NN
5 dfin5 3123 . . . . 5  |-  ( ZZ 
i^i  NN )  =  {
z  e.  ZZ  | 
z  e.  NN }
64, 5eqtr3i 2188 . . . 4  |-  NN  =  { z  e.  ZZ  |  z  e.  NN }
76uneq1i 3272 . . 3  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  ( { z  e.  ZZ  |  z  e.  NN }  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)
8 rabid2 2642 . . . 4  |-  ( ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }  <->  A. z  e.  ZZ  ( z  e.  NN  \/  -u z  e.  NN0 ) )
9 elznn 9207 . . . . 5  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN  \/  -u z  e.  NN0 ) ) )
109simprbi 273 . . . 4  |-  ( z  e.  ZZ  ->  (
z  e.  NN  \/  -u z  e.  NN0 )
)
118, 10mprgbir 2524 . . 3  |-  ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
121, 7, 113eqtr4ri 2197 . 2  |-  ZZ  =  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )
13 nnex 8863 . . . 4  |-  NN  e.  _V
1413enref 6731 . . 3  |-  NN  ~~  NN
15 zex 9200 . . . . . 6  |-  ZZ  e.  _V
1615rabex 4126 . . . . 5  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  e.  _V
17 nn0ex 9120 . . . . 5  |-  NN0  e.  _V
18 negeq 8091 . . . . . . . 8  |-  ( z  =  x  ->  -u z  =  -u x )
1918eleq1d 2235 . . . . . . 7  |-  ( z  =  x  ->  ( -u z  e.  NN0  <->  -u x  e. 
NN0 ) )
2019elrab 2882 . . . . . 6  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  <->  ( x  e.  ZZ  /\  -u x  e.  NN0 ) )
2120simprbi 273 . . . . 5  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  -u x  e.  NN0 )
22 negeq 8091 . . . . . . 7  |-  ( z  =  -u y  ->  -u z  =  -u -u y )
2322eleq1d 2235 . . . . . 6  |-  ( z  =  -u y  ->  ( -u z  e.  NN0  <->  -u -u y  e.  NN0 ) )
24 nn0negz 9225 . . . . . 6  |-  ( y  e.  NN0  ->  -u y  e.  ZZ )
25 nn0cn 9124 . . . . . . . . 9  |-  ( y  e.  NN0  ->  y  e.  CC )
2625negnegd 8200 . . . . . . . 8  |-  ( y  e.  NN0  ->  -u -u y  =  y )
2726eleq1d 2235 . . . . . . 7  |-  ( y  e.  NN0  ->  ( -u -u y  e.  NN0  <->  y  e.  NN0 ) )
2827ibir 176 . . . . . 6  |-  ( y  e.  NN0  ->  -u -u y  e.  NN0 )
2923, 24, 28elrabd 2884 . . . . 5  |-  ( y  e.  NN0  ->  -u y  e.  { z  e.  ZZ  |  -u z  e.  NN0 } )
30 elrabi 2879 . . . . . . . 8  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  x  e.  ZZ )
3130adantr 274 . . . . . . 7  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  ZZ )
3231zcnd 9314 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  CC )
3325adantl 275 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
y  e.  CC )
34 negcon2 8151 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3532, 33, 34syl2anc 409 . . . . 5  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
3616, 17, 21, 29, 35en3i 6737 . . . 4  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN0
37 nn0ennn 10368 . . . 4  |-  NN0  ~~  NN
3836, 37entri 6752 . . 3  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN
39 inrab2 3395 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  {
z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }
40 incom 3314 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  ( NN  i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )
41 rabeq0 3438 . . . . 5  |-  ( { z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }  =  (/)  <->  A. z  e.  ( ZZ 
i^i  NN )  -.  -u z  e.  NN0 )
42 0red 7900 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  e.  RR )
43 simpl 108 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  NN )
4443nnred 8870 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  RR )
45 nngt0 8882 . . . . . . . . 9  |-  ( z  e.  NN  ->  0  <  z )
4645adantr 274 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  z )
47 nn0ge0 9139 . . . . . . . . . 10  |-  ( -u z  e.  NN0  ->  0  <_ 
-u z )
4847adantl 275 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <_  -u z )
4944le0neg1d 8415 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  ( z  <_  0  <->  0  <_  -u z ) )
5048, 49mpbird 166 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  <_  0 )
5142, 44, 42, 46, 50ltletrd 8321 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  0 )
5242ltnrd 8010 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  -.  0  <  0
)
5351, 52pm2.65da 651 . . . . . 6  |-  ( z  e.  NN  ->  -.  -u z  e.  NN0 )
5453, 4eleq2s 2261 . . . . 5  |-  ( z  e.  ( ZZ  i^i  NN )  ->  -.  -u z  e.  NN0 )
5541, 54mprgbir 2524 . . . 4  |-  { z  e.  ( ZZ  i^i  NN )  |  -u z  e.  NN0 }  =  (/)
5639, 40, 553eqtr3i 2194 . . 3  |-  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/)
57 unennn 12330 . . 3  |-  ( ( NN  ~~  NN  /\  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN  /\  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/) )  -> 
( NN  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)  ~~  NN )
5814, 38, 56, 57mp3an 1327 . 2  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  ~~  NN
5912, 58eqbrtri 4003 1  |-  ZZ  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   {crab 2448    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   class class class wbr 3982    ~~ cen 6704   CCcc 7751   RRcr 7752   0cc0 7753    < clt 7933    <_ cle 7934   -ucneg 8070   NNcn 8857   NN0cn0 9114   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-en 6707  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-dvds 11728
This theorem is referenced by:  qnnen  12364
  Copyright terms: Public domain W3C validator