| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znnen | Unicode version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
| Ref | Expression |
|---|---|
| znnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unrab 3452 |
. . 3
| |
| 2 | nnssz 9424 |
. . . . . 6
| |
| 3 | dfss1 3385 |
. . . . . 6
| |
| 4 | 2, 3 | mpbi 145 |
. . . . 5
|
| 5 | dfin5 3181 |
. . . . 5
| |
| 6 | 4, 5 | eqtr3i 2230 |
. . . 4
|
| 7 | 6 | uneq1i 3331 |
. . 3
|
| 8 | rabid2 2685 |
. . . 4
| |
| 9 | elznn 9423 |
. . . . 5
| |
| 10 | 9 | simprbi 275 |
. . . 4
|
| 11 | 8, 10 | mprgbir 2566 |
. . 3
|
| 12 | 1, 7, 11 | 3eqtr4ri 2239 |
. 2
|
| 13 | nnex 9077 |
. . . 4
| |
| 14 | 13 | enref 6879 |
. . 3
|
| 15 | zex 9416 |
. . . . . 6
| |
| 16 | 15 | rabex 4204 |
. . . . 5
|
| 17 | nn0ex 9336 |
. . . . 5
| |
| 18 | negeq 8300 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2276 |
. . . . . . 7
|
| 20 | 19 | elrab 2936 |
. . . . . 6
|
| 21 | 20 | simprbi 275 |
. . . . 5
|
| 22 | negeq 8300 |
. . . . . . 7
| |
| 23 | 22 | eleq1d 2276 |
. . . . . 6
|
| 24 | nn0negz 9441 |
. . . . . 6
| |
| 25 | nn0cn 9340 |
. . . . . . . . 9
| |
| 26 | 25 | negnegd 8409 |
. . . . . . . 8
|
| 27 | 26 | eleq1d 2276 |
. . . . . . 7
|
| 28 | 27 | ibir 177 |
. . . . . 6
|
| 29 | 23, 24, 28 | elrabd 2938 |
. . . . 5
|
| 30 | elrabi 2933 |
. . . . . . . 8
| |
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 31 | zcnd 9531 |
. . . . . 6
|
| 33 | 25 | adantl 277 |
. . . . . 6
|
| 34 | negcon2 8360 |
. . . . . 6
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 16, 17, 21, 29, 35 | en3i 6885 |
. . . 4
|
| 37 | nn0ennn 10615 |
. . . 4
| |
| 38 | 36, 37 | entri 6901 |
. . 3
|
| 39 | inrab2 3454 |
. . . 4
| |
| 40 | incom 3373 |
. . . 4
| |
| 41 | rabeq0 3498 |
. . . . 5
| |
| 42 | 0red 8108 |
. . . . . . . 8
| |
| 43 | simpl 109 |
. . . . . . . . 9
| |
| 44 | 43 | nnred 9084 |
. . . . . . . 8
|
| 45 | nngt0 9096 |
. . . . . . . . 9
| |
| 46 | 45 | adantr 276 |
. . . . . . . 8
|
| 47 | nn0ge0 9355 |
. . . . . . . . . 10
| |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
|
| 49 | 44 | le0neg1d 8625 |
. . . . . . . . 9
|
| 50 | 48, 49 | mpbird 167 |
. . . . . . . 8
|
| 51 | 42, 44, 42, 46, 50 | ltletrd 8531 |
. . . . . . 7
|
| 52 | 42 | ltnrd 8219 |
. . . . . . 7
|
| 53 | 51, 52 | pm2.65da 663 |
. . . . . 6
|
| 54 | 53, 4 | eleq2s 2302 |
. . . . 5
|
| 55 | 41, 54 | mprgbir 2566 |
. . . 4
|
| 56 | 39, 40, 55 | 3eqtr3i 2236 |
. . 3
|
| 57 | unennn 12883 |
. . 3
| |
| 58 | 14, 38, 56, 57 | mp3an 1350 |
. 2
|
| 59 | 12, 58 | eqbrtri 4080 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-er 6643 df-en 6851 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 df-dvds 12214 |
| This theorem is referenced by: qnnen 12917 |
| Copyright terms: Public domain | W3C validator |