ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen Unicode version

Theorem znnen 12615
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3434 . . 3  |-  ( { z  e.  ZZ  | 
z  e.  NN }  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
2 nnssz 9343 . . . . . 6  |-  NN  C_  ZZ
3 dfss1 3367 . . . . . 6  |-  ( NN  C_  ZZ  <->  ( ZZ  i^i  NN )  =  NN )
42, 3mpbi 145 . . . . 5  |-  ( ZZ 
i^i  NN )  =  NN
5 dfin5 3164 . . . . 5  |-  ( ZZ 
i^i  NN )  =  {
z  e.  ZZ  | 
z  e.  NN }
64, 5eqtr3i 2219 . . . 4  |-  NN  =  { z  e.  ZZ  |  z  e.  NN }
76uneq1i 3313 . . 3  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  ( { z  e.  ZZ  |  z  e.  NN }  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)
8 rabid2 2674 . . . 4  |-  ( ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }  <->  A. z  e.  ZZ  ( z  e.  NN  \/  -u z  e.  NN0 ) )
9 elznn 9342 . . . . 5  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN  \/  -u z  e.  NN0 ) ) )
109simprbi 275 . . . 4  |-  ( z  e.  ZZ  ->  (
z  e.  NN  \/  -u z  e.  NN0 )
)
118, 10mprgbir 2555 . . 3  |-  ZZ  =  { z  e.  ZZ  |  ( z  e.  NN  \/  -u z  e.  NN0 ) }
121, 7, 113eqtr4ri 2228 . 2  |-  ZZ  =  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )
13 nnex 8996 . . . 4  |-  NN  e.  _V
1413enref 6824 . . 3  |-  NN  ~~  NN
15 zex 9335 . . . . . 6  |-  ZZ  e.  _V
1615rabex 4177 . . . . 5  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  e.  _V
17 nn0ex 9255 . . . . 5  |-  NN0  e.  _V
18 negeq 8219 . . . . . . . 8  |-  ( z  =  x  ->  -u z  =  -u x )
1918eleq1d 2265 . . . . . . 7  |-  ( z  =  x  ->  ( -u z  e.  NN0  <->  -u x  e. 
NN0 ) )
2019elrab 2920 . . . . . 6  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  <->  ( x  e.  ZZ  /\  -u x  e.  NN0 ) )
2120simprbi 275 . . . . 5  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  -u x  e.  NN0 )
22 negeq 8219 . . . . . . 7  |-  ( z  =  -u y  ->  -u z  =  -u -u y )
2322eleq1d 2265 . . . . . 6  |-  ( z  =  -u y  ->  ( -u z  e.  NN0  <->  -u -u y  e.  NN0 ) )
24 nn0negz 9360 . . . . . 6  |-  ( y  e.  NN0  ->  -u y  e.  ZZ )
25 nn0cn 9259 . . . . . . . . 9  |-  ( y  e.  NN0  ->  y  e.  CC )
2625negnegd 8328 . . . . . . . 8  |-  ( y  e.  NN0  ->  -u -u y  =  y )
2726eleq1d 2265 . . . . . . 7  |-  ( y  e.  NN0  ->  ( -u -u y  e.  NN0  <->  y  e.  NN0 ) )
2827ibir 177 . . . . . 6  |-  ( y  e.  NN0  ->  -u -u y  e.  NN0 )
2923, 24, 28elrabd 2922 . . . . 5  |-  ( y  e.  NN0  ->  -u y  e.  { z  e.  ZZ  |  -u z  e.  NN0 } )
30 elrabi 2917 . . . . . . . 8  |-  ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  ->  x  e.  ZZ )
3130adantr 276 . . . . . . 7  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  ZZ )
3231zcnd 9449 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  ->  x  e.  CC )
3325adantl 277 . . . . . 6  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
y  e.  CC )
34 negcon2 8279 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3532, 33, 34syl2anc 411 . . . . 5  |-  ( ( x  e.  { z  e.  ZZ  |  -u z  e.  NN0 }  /\  y  e.  NN0 )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
3616, 17, 21, 29, 35en3i 6830 . . . 4  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN0
37 nn0ennn 10525 . . . 4  |-  NN0  ~~  NN
3836, 37entri 6845 . . 3  |-  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN
39 inrab2 3436 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  {
z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }
40 incom 3355 . . . 4  |-  ( { z  e.  ZZ  |  -u z  e.  NN0 }  i^i  NN )  =  ( NN  i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )
41 rabeq0 3480 . . . . 5  |-  ( { z  e.  ( ZZ 
i^i  NN )  |  -u z  e.  NN0 }  =  (/)  <->  A. z  e.  ( ZZ 
i^i  NN )  -.  -u z  e.  NN0 )
42 0red 8027 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  e.  RR )
43 simpl 109 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  NN )
4443nnred 9003 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  e.  RR )
45 nngt0 9015 . . . . . . . . 9  |-  ( z  e.  NN  ->  0  <  z )
4645adantr 276 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  z )
47 nn0ge0 9274 . . . . . . . . . 10  |-  ( -u z  e.  NN0  ->  0  <_ 
-u z )
4847adantl 277 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <_  -u z )
4944le0neg1d 8544 . . . . . . . . 9  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  ( z  <_  0  <->  0  <_  -u z ) )
5048, 49mpbird 167 . . . . . . . 8  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  z  <_  0 )
5142, 44, 42, 46, 50ltletrd 8450 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  0  <  0 )
5242ltnrd 8138 . . . . . . 7  |-  ( ( z  e.  NN  /\  -u z  e.  NN0 )  ->  -.  0  <  0
)
5351, 52pm2.65da 662 . . . . . 6  |-  ( z  e.  NN  ->  -.  -u z  e.  NN0 )
5453, 4eleq2s 2291 . . . . 5  |-  ( z  e.  ( ZZ  i^i  NN )  ->  -.  -u z  e.  NN0 )
5541, 54mprgbir 2555 . . . 4  |-  { z  e.  ( ZZ  i^i  NN )  |  -u z  e.  NN0 }  =  (/)
5639, 40, 553eqtr3i 2225 . . 3  |-  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/)
57 unennn 12614 . . 3  |-  ( ( NN  ~~  NN  /\  { z  e.  ZZ  |  -u z  e.  NN0 }  ~~  NN  /\  ( NN 
i^i  { z  e.  ZZ  |  -u z  e.  NN0 } )  =  (/) )  -> 
( NN  u.  {
z  e.  ZZ  |  -u z  e.  NN0 }
)  ~~  NN )
5814, 38, 56, 57mp3an 1348 . 2  |-  ( NN  u.  { z  e.  ZZ  |  -u z  e.  NN0 } )  ~~  NN
5912, 58eqbrtri 4054 1  |-  ZZ  ~~  NN
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   {crab 2479    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   class class class wbr 4033    ~~ cen 6797   CCcc 7877   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062   -ucneg 8198   NNcn 8990   NN0cn0 9249   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-dvds 11953
This theorem is referenced by:  qnnen  12648
  Copyright terms: Public domain W3C validator