| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znnen | Unicode version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
| Ref | Expression |
|---|---|
| znnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unrab 3444 |
. . 3
| |
| 2 | nnssz 9391 |
. . . . . 6
| |
| 3 | dfss1 3377 |
. . . . . 6
| |
| 4 | 2, 3 | mpbi 145 |
. . . . 5
|
| 5 | dfin5 3173 |
. . . . 5
| |
| 6 | 4, 5 | eqtr3i 2228 |
. . . 4
|
| 7 | 6 | uneq1i 3323 |
. . 3
|
| 8 | rabid2 2683 |
. . . 4
| |
| 9 | elznn 9390 |
. . . . 5
| |
| 10 | 9 | simprbi 275 |
. . . 4
|
| 11 | 8, 10 | mprgbir 2564 |
. . 3
|
| 12 | 1, 7, 11 | 3eqtr4ri 2237 |
. 2
|
| 13 | nnex 9044 |
. . . 4
| |
| 14 | 13 | enref 6858 |
. . 3
|
| 15 | zex 9383 |
. . . . . 6
| |
| 16 | 15 | rabex 4189 |
. . . . 5
|
| 17 | nn0ex 9303 |
. . . . 5
| |
| 18 | negeq 8267 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2274 |
. . . . . . 7
|
| 20 | 19 | elrab 2929 |
. . . . . 6
|
| 21 | 20 | simprbi 275 |
. . . . 5
|
| 22 | negeq 8267 |
. . . . . . 7
| |
| 23 | 22 | eleq1d 2274 |
. . . . . 6
|
| 24 | nn0negz 9408 |
. . . . . 6
| |
| 25 | nn0cn 9307 |
. . . . . . . . 9
| |
| 26 | 25 | negnegd 8376 |
. . . . . . . 8
|
| 27 | 26 | eleq1d 2274 |
. . . . . . 7
|
| 28 | 27 | ibir 177 |
. . . . . 6
|
| 29 | 23, 24, 28 | elrabd 2931 |
. . . . 5
|
| 30 | elrabi 2926 |
. . . . . . . 8
| |
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 31 | zcnd 9498 |
. . . . . 6
|
| 33 | 25 | adantl 277 |
. . . . . 6
|
| 34 | negcon2 8327 |
. . . . . 6
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 16, 17, 21, 29, 35 | en3i 6864 |
. . . 4
|
| 37 | nn0ennn 10580 |
. . . 4
| |
| 38 | 36, 37 | entri 6880 |
. . 3
|
| 39 | inrab2 3446 |
. . . 4
| |
| 40 | incom 3365 |
. . . 4
| |
| 41 | rabeq0 3490 |
. . . . 5
| |
| 42 | 0red 8075 |
. . . . . . . 8
| |
| 43 | simpl 109 |
. . . . . . . . 9
| |
| 44 | 43 | nnred 9051 |
. . . . . . . 8
|
| 45 | nngt0 9063 |
. . . . . . . . 9
| |
| 46 | 45 | adantr 276 |
. . . . . . . 8
|
| 47 | nn0ge0 9322 |
. . . . . . . . . 10
| |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
|
| 49 | 44 | le0neg1d 8592 |
. . . . . . . . 9
|
| 50 | 48, 49 | mpbird 167 |
. . . . . . . 8
|
| 51 | 42, 44, 42, 46, 50 | ltletrd 8498 |
. . . . . . 7
|
| 52 | 42 | ltnrd 8186 |
. . . . . . 7
|
| 53 | 51, 52 | pm2.65da 663 |
. . . . . 6
|
| 54 | 53, 4 | eleq2s 2300 |
. . . . 5
|
| 55 | 41, 54 | mprgbir 2564 |
. . . 4
|
| 56 | 39, 40, 55 | 3eqtr3i 2234 |
. . 3
|
| 57 | unennn 12801 |
. . 3
| |
| 58 | 14, 38, 56, 57 | mp3an 1350 |
. 2
|
| 59 | 12, 58 | eqbrtri 4066 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-er 6622 df-en 6830 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-n0 9298 df-z 9375 df-q 9743 df-rp 9778 df-fl 10415 df-mod 10470 df-dvds 12132 |
| This theorem is referenced by: qnnen 12835 |
| Copyright terms: Public domain | W3C validator |