| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znnen | Unicode version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
| Ref | Expression |
|---|---|
| znnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unrab 3434 |
. . 3
| |
| 2 | nnssz 9343 |
. . . . . 6
| |
| 3 | dfss1 3367 |
. . . . . 6
| |
| 4 | 2, 3 | mpbi 145 |
. . . . 5
|
| 5 | dfin5 3164 |
. . . . 5
| |
| 6 | 4, 5 | eqtr3i 2219 |
. . . 4
|
| 7 | 6 | uneq1i 3313 |
. . 3
|
| 8 | rabid2 2674 |
. . . 4
| |
| 9 | elznn 9342 |
. . . . 5
| |
| 10 | 9 | simprbi 275 |
. . . 4
|
| 11 | 8, 10 | mprgbir 2555 |
. . 3
|
| 12 | 1, 7, 11 | 3eqtr4ri 2228 |
. 2
|
| 13 | nnex 8996 |
. . . 4
| |
| 14 | 13 | enref 6824 |
. . 3
|
| 15 | zex 9335 |
. . . . . 6
| |
| 16 | 15 | rabex 4177 |
. . . . 5
|
| 17 | nn0ex 9255 |
. . . . 5
| |
| 18 | negeq 8219 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2265 |
. . . . . . 7
|
| 20 | 19 | elrab 2920 |
. . . . . 6
|
| 21 | 20 | simprbi 275 |
. . . . 5
|
| 22 | negeq 8219 |
. . . . . . 7
| |
| 23 | 22 | eleq1d 2265 |
. . . . . 6
|
| 24 | nn0negz 9360 |
. . . . . 6
| |
| 25 | nn0cn 9259 |
. . . . . . . . 9
| |
| 26 | 25 | negnegd 8328 |
. . . . . . . 8
|
| 27 | 26 | eleq1d 2265 |
. . . . . . 7
|
| 28 | 27 | ibir 177 |
. . . . . 6
|
| 29 | 23, 24, 28 | elrabd 2922 |
. . . . 5
|
| 30 | elrabi 2917 |
. . . . . . . 8
| |
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 31 | zcnd 9449 |
. . . . . 6
|
| 33 | 25 | adantl 277 |
. . . . . 6
|
| 34 | negcon2 8279 |
. . . . . 6
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 16, 17, 21, 29, 35 | en3i 6830 |
. . . 4
|
| 37 | nn0ennn 10525 |
. . . 4
| |
| 38 | 36, 37 | entri 6845 |
. . 3
|
| 39 | inrab2 3436 |
. . . 4
| |
| 40 | incom 3355 |
. . . 4
| |
| 41 | rabeq0 3480 |
. . . . 5
| |
| 42 | 0red 8027 |
. . . . . . . 8
| |
| 43 | simpl 109 |
. . . . . . . . 9
| |
| 44 | 43 | nnred 9003 |
. . . . . . . 8
|
| 45 | nngt0 9015 |
. . . . . . . . 9
| |
| 46 | 45 | adantr 276 |
. . . . . . . 8
|
| 47 | nn0ge0 9274 |
. . . . . . . . . 10
| |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
|
| 49 | 44 | le0neg1d 8544 |
. . . . . . . . 9
|
| 50 | 48, 49 | mpbird 167 |
. . . . . . . 8
|
| 51 | 42, 44, 42, 46, 50 | ltletrd 8450 |
. . . . . . 7
|
| 52 | 42 | ltnrd 8138 |
. . . . . . 7
|
| 53 | 51, 52 | pm2.65da 662 |
. . . . . 6
|
| 54 | 53, 4 | eleq2s 2291 |
. . . . 5
|
| 55 | 41, 54 | mprgbir 2555 |
. . . 4
|
| 56 | 39, 40, 55 | 3eqtr3i 2225 |
. . 3
|
| 57 | unennn 12614 |
. . 3
| |
| 58 | 14, 38, 56, 57 | mp3an 1348 |
. 2
|
| 59 | 12, 58 | eqbrtri 4054 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-er 6592 df-en 6800 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 df-mod 10415 df-dvds 11953 |
| This theorem is referenced by: qnnen 12648 |
| Copyright terms: Public domain | W3C validator |