| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znnen | Unicode version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
| Ref | Expression |
|---|---|
| znnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unrab 3475 |
. . 3
| |
| 2 | nnssz 9463 |
. . . . . 6
| |
| 3 | dfss1 3408 |
. . . . . 6
| |
| 4 | 2, 3 | mpbi 145 |
. . . . 5
|
| 5 | dfin5 3204 |
. . . . 5
| |
| 6 | 4, 5 | eqtr3i 2252 |
. . . 4
|
| 7 | 6 | uneq1i 3354 |
. . 3
|
| 8 | rabid2 2708 |
. . . 4
| |
| 9 | elznn 9462 |
. . . . 5
| |
| 10 | 9 | simprbi 275 |
. . . 4
|
| 11 | 8, 10 | mprgbir 2588 |
. . 3
|
| 12 | 1, 7, 11 | 3eqtr4ri 2261 |
. 2
|
| 13 | nnex 9116 |
. . . 4
| |
| 14 | 13 | enref 6916 |
. . 3
|
| 15 | zex 9455 |
. . . . . 6
| |
| 16 | 15 | rabex 4228 |
. . . . 5
|
| 17 | nn0ex 9375 |
. . . . 5
| |
| 18 | negeq 8339 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2298 |
. . . . . . 7
|
| 20 | 19 | elrab 2959 |
. . . . . 6
|
| 21 | 20 | simprbi 275 |
. . . . 5
|
| 22 | negeq 8339 |
. . . . . . 7
| |
| 23 | 22 | eleq1d 2298 |
. . . . . 6
|
| 24 | nn0negz 9480 |
. . . . . 6
| |
| 25 | nn0cn 9379 |
. . . . . . . . 9
| |
| 26 | 25 | negnegd 8448 |
. . . . . . . 8
|
| 27 | 26 | eleq1d 2298 |
. . . . . . 7
|
| 28 | 27 | ibir 177 |
. . . . . 6
|
| 29 | 23, 24, 28 | elrabd 2961 |
. . . . 5
|
| 30 | elrabi 2956 |
. . . . . . . 8
| |
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | 31 | zcnd 9570 |
. . . . . 6
|
| 33 | 25 | adantl 277 |
. . . . . 6
|
| 34 | negcon2 8399 |
. . . . . 6
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 16, 17, 21, 29, 35 | en3i 6922 |
. . . 4
|
| 37 | nn0ennn 10655 |
. . . 4
| |
| 38 | 36, 37 | entri 6938 |
. . 3
|
| 39 | inrab2 3477 |
. . . 4
| |
| 40 | incom 3396 |
. . . 4
| |
| 41 | rabeq0 3521 |
. . . . 5
| |
| 42 | 0red 8147 |
. . . . . . . 8
| |
| 43 | simpl 109 |
. . . . . . . . 9
| |
| 44 | 43 | nnred 9123 |
. . . . . . . 8
|
| 45 | nngt0 9135 |
. . . . . . . . 9
| |
| 46 | 45 | adantr 276 |
. . . . . . . 8
|
| 47 | nn0ge0 9394 |
. . . . . . . . . 10
| |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
|
| 49 | 44 | le0neg1d 8664 |
. . . . . . . . 9
|
| 50 | 48, 49 | mpbird 167 |
. . . . . . . 8
|
| 51 | 42, 44, 42, 46, 50 | ltletrd 8570 |
. . . . . . 7
|
| 52 | 42 | ltnrd 8258 |
. . . . . . 7
|
| 53 | 51, 52 | pm2.65da 665 |
. . . . . 6
|
| 54 | 53, 4 | eleq2s 2324 |
. . . . 5
|
| 55 | 41, 54 | mprgbir 2588 |
. . . 4
|
| 56 | 39, 40, 55 | 3eqtr3i 2258 |
. . 3
|
| 57 | unennn 12968 |
. . 3
| |
| 58 | 14, 38, 56, 57 | mp3an 1371 |
. 2
|
| 59 | 12, 58 | eqbrtri 4104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-er 6680 df-en 6888 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-q 9815 df-rp 9850 df-fl 10490 df-mod 10545 df-dvds 12299 |
| This theorem is referenced by: qnnen 13002 |
| Copyright terms: Public domain | W3C validator |