ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmindc Unicode version

Theorem nnmindc 11989
Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nnmindc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  E. y  y  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
Distinct variable group:    x, A, y

Proof of Theorem nnmindc
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1zzd 9239 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  ->  1  e.  ZZ )
2 eqid 2170 . . . . . 6  |-  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }  =  { n  e.  ( ZZ>= `  1 )  |  n  e.  A }
3 simpr 109 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  ->  y  e.  A )
4 dfss5 3332 . . . . . . . . . 10  |-  ( A 
C_  NN  <->  A  =  ( NN  i^i  A ) )
54biimpi 119 . . . . . . . . 9  |-  ( A 
C_  NN  ->  A  =  ( NN  i^i  A
) )
6 nnuz 9522 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
76ineq1i 3324 . . . . . . . . . 10  |-  ( NN 
i^i  A )  =  ( ( ZZ>= `  1
)  i^i  A )
8 dfin5 3128 . . . . . . . . . 10  |-  ( (
ZZ>= `  1 )  i^i 
A )  =  {
n  e.  ( ZZ>= ` 
1 )  |  n  e.  A }
97, 8eqtri 2191 . . . . . . . . 9  |-  ( NN 
i^i  A )  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
105, 9eqtrdi 2219 . . . . . . . 8  |-  ( A 
C_  NN  ->  A  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
1110ad2antrr 485 . . . . . . 7  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  ->  A  =  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
123, 11eleqtrd 2249 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  ->  y  e.  { n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
13 eleq1w 2231 . . . . . . . 8  |-  ( x  =  n  ->  (
x  e.  A  <->  n  e.  A ) )
1413dcbid 833 . . . . . . 7  |-  ( x  =  n  ->  (DECID  x  e.  A  <-> DECID  n  e.  A )
)
15 simpllr 529 . . . . . . 7  |-  ( ( ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A
)  /\  n  e.  ( 1 ... y
) )  ->  A. x  e.  NN DECID  x  e.  A )
16 elfznn 10010 . . . . . . . 8  |-  ( n  e.  ( 1 ... y )  ->  n  e.  NN )
1716adantl 275 . . . . . . 7  |-  ( ( ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A
)  /\  n  e.  ( 1 ... y
) )  ->  n  e.  NN )
1814, 15, 17rspcdva 2839 . . . . . 6  |-  ( ( ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A
)  /\  n  e.  ( 1 ... y
) )  -> DECID  n  e.  A
)
191, 2, 12, 18infssuzcldc 11906 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  -> inf ( { n  e.  ( ZZ>= ` 
1 )  |  n  e.  A } ,  RR ,  <  )  e. 
{ n  e.  (
ZZ>= `  1 )  |  n  e.  A }
)
2011infeq1d 6989 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  -> inf ( A ,  RR ,  <  )  = inf ( { n  e.  ( ZZ>= `  1 )  |  n  e.  A } ,  RR ,  <  ) )
2119, 20, 113eltr4d 2254 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A )  /\  y  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
2221ex 114 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  ( y  e.  A  -> inf ( A ,  RR ,  <  )  e.  A ) )
2322exlimdv 1812 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  ( E. y  y  e.  A  -> inf ( A ,  RR ,  <  )  e.  A
) )
24233impia 1195 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  E. y  y  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   {crab 2452    i^i cin 3120    C_ wss 3121   ` cfv 5198  (class class class)co 5853  infcinf 6960   RRcr 7773   1c1 7775    < clt 7954   NNcn 8878   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  nnwodc  11991  nninfdclemcl  12403  nninfdclemp1  12405
  Copyright terms: Public domain W3C validator