Proof of Theorem dfplq0qs
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-plq0 7494 | 
. 2
⊢ 
+Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))} | 
| 2 |   | df-nq0 7492 | 
. . . . . 6
⊢
Q0 = ((ω × N)
/ ~Q0 ) | 
| 3 | 2 | eleq2i 2263 | 
. . . . 5
⊢ (𝑥 ∈
Q0 ↔ 𝑥 ∈ ((ω × N)
/ ~Q0 )) | 
| 4 | 2 | eleq2i 2263 | 
. . . . 5
⊢ (𝑦 ∈
Q0 ↔ 𝑦 ∈ ((ω × N)
/ ~Q0 )) | 
| 5 | 3, 4 | anbi12i 460 | 
. . . 4
⊢ ((𝑥 ∈
Q0 ∧ 𝑦 ∈ Q0) ↔
(𝑥 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝑦 ∈ ((ω ×
N) / ~Q0 ))) | 
| 6 | 5 | anbi1i 458 | 
. . 3
⊢ (((𝑥 ∈
Q0 ∧ 𝑦 ∈ Q0) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))
↔ ((𝑥 ∈ ((ω
× N) / ~Q0 ) ∧ 𝑦 ∈ ((ω ×
N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))) | 
| 7 | 6 | oprabbii 5977 | 
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧
𝑦 ∈
Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))} =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N)
/ ~Q0 ) ∧ 𝑦 ∈ ((ω × N)
/ ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))} | 
| 8 | 1, 7 | eqtri 2217 | 
1
⊢ 
+Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N)
/ ~Q0 ) ∧ 𝑦 ∈ ((ω × N)
/ ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧
𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0
))} |