ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 Unicode version

Theorem addnnnq0 7439
Description: Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )

Proof of Theorem addnnnq0
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4655 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( om  X.  N. ) )
2 enq0ex 7429 . . . . 5  |- ~Q0  e.  _V
32ecelqsi 6583 . . . 4  |-  ( <. A ,  B >.  e.  ( om  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
41, 3syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 opelxpi 4655 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( om  X.  N. ) )
62ecelqsi 6583 . . . 4  |-  ( <. C ,  D >.  e.  ( om  X.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
75, 6syl 14 . . 3  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
84, 7anim12i 338 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
9 eqid 2177 . . . 4  |-  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0
10 eqid 2177 . . . 4  |-  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0
119, 10pm3.2i 272 . . 3  |-  ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
12 eqid 2177 . . 3  |-  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0
13 opeq12 3778 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6565 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  )
1514eqeq2d 2189 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  <->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  ) )
1615anbi1d 465 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  <->  ( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
17 simpl 109 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5884 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  .o  D
)  =  ( A  .o  D ) )
19 simpr 110 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5884 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .o  C
)  =  ( B  .o  C ) )
2118, 20oveq12d 5887 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .o  D )  +o  (
v  .o  C ) )  =  ( ( A  .o  D )  +o  ( B  .o  C ) ) )
2219oveq1d 5884 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .o  D
)  =  ( B  .o  D ) )
2321, 22opeq12d 3784 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( ( w  .o  D )  +o  (
v  .o  C ) ) ,  ( v  .o  D ) >.  =  <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. )
2423eceq1d 6565 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  )
2524eqeq2d 2189 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  <->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  ) )
2616, 25anbi12d 473 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) ) )
2726spc2egv 2827 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
28 opeq12 3778 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2928eceq1d 6565 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
3029eqeq2d 2189 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  <->  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) )
3130anbi2d 464 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  <->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
32 simpr 110 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5885 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  .o  t
)  =  ( w  .o  D ) )
34 simpl 109 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3534oveq2d 5885 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .o  u
)  =  ( v  .o  C ) )
3633, 35oveq12d 5887 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( w  .o  t )  +o  (
v  .o  u ) )  =  ( ( w  .o  D )  +o  ( v  .o  C ) ) )
3732oveq2d 5885 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .o  t
)  =  ( v  .o  D ) )
3836, 37opeq12d 3784 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >.  =  <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. )
3938eceq1d 6565 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  )
4039eqeq2d 2189 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  ) )
4131, 40anbi12d 473 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
4241spc2egv 2827 . . . . 5  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
43422eximdv 1882 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
4427, 43sylan9 409 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( (
( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
4511, 12, 44mp2ani 432 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
46 ecexg 6533 . . . 4  |-  ( ~Q0  e.  _V  ->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  e.  _V )
472, 46ax-mp 5 . . 3  |-  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V
48 simp1 997 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  x  =  [ <. A ,  B >. ] ~Q0  )
4948eqeq1d 2186 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( x  =  [ <. w ,  v
>. ] ~Q0  <->  [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  ) )
50 simp2 998 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  y  =  [ <. C ,  D >. ] ~Q0  )
5150eqeq1d 2186 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( y  =  [ <. u ,  t
>. ] ~Q0  <->  [
<. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  ) )
5249, 51anbi12d 473 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( (
x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  ) ) )
53 simp3 999 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  z  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  )
5453eqeq1d 2186 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  <->  [
<. ( ( A  .o  D )  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
5552, 54anbi12d 473 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( (
( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
56554exbidv 1870 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
57 addnq0mo 7437 . . . 4  |-  ( ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
58 dfplq0qs 7420 . . . 4  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) }
5956, 57, 58ovig 5990 . . 3  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) )
6047, 59mp3an3 1326 . 2  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) )
618, 45, 60sylc 62 1  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   <.cop 3594   omcom 4586    X. cxp 4621  (class class class)co 5869    +o coa 6408    .o comu 6409   [cec 6527   /.cqs 6528   N.cnpi 7262   ~Q0 ceq0 7276   +Q0 cplq0 7279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-enq0 7414  df-nq0 7415  df-plq0 7417
This theorem is referenced by:  addclnq0  7441  nqpnq0nq  7443  nqnq0a  7444  nq0a0  7447  nnanq0  7448  distrnq0  7449  addassnq0  7452
  Copyright terms: Public domain W3C validator