ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 Unicode version

Theorem addnnnq0 7390
Description: Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )

Proof of Theorem addnnnq0
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4636 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( om  X.  N. ) )
2 enq0ex 7380 . . . . 5  |- ~Q0  e.  _V
32ecelqsi 6555 . . . 4  |-  ( <. A ,  B >.  e.  ( om  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
41, 3syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 opelxpi 4636 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( om  X.  N. ) )
62ecelqsi 6555 . . . 4  |-  ( <. C ,  D >.  e.  ( om  X.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
75, 6syl 14 . . 3  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
84, 7anim12i 336 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
9 eqid 2165 . . . 4  |-  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0
10 eqid 2165 . . . 4  |-  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0
119, 10pm3.2i 270 . . 3  |-  ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
12 eqid 2165 . . 3  |-  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0
13 opeq12 3760 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
1413eceq1d 6537 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  )
1514eqeq2d 2177 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  <->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  ) )
1615anbi1d 461 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  <->  ( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
17 simpl 108 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  w  =  A )
1817oveq1d 5857 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  .o  D
)  =  ( A  .o  D ) )
19 simpr 109 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  v  =  B )
2019oveq1d 5857 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .o  C
)  =  ( B  .o  C ) )
2118, 20oveq12d 5860 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .o  D )  +o  (
v  .o  C ) )  =  ( ( A  .o  D )  +o  ( B  .o  C ) ) )
2219oveq1d 5857 . . . . . . . . 9  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .o  D
)  =  ( B  .o  D ) )
2321, 22opeq12d 3766 . . . . . . . 8  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( ( w  .o  D )  +o  (
v  .o  C ) ) ,  ( v  .o  D ) >.  =  <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. )
2423eceq1d 6537 . . . . . . 7  |-  ( ( w  =  A  /\  v  =  B )  ->  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  )
2524eqeq2d 2177 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  ->  ( [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  <->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  ) )
2616, 25anbi12d 465 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) ) )
2726spc2egv 2816 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
28 opeq12 3760 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
2928eceq1d 6537 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
3029eqeq2d 2177 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  <->  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) )
3130anbi2d 460 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  <->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
32 simpr 109 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  t  =  D )
3332oveq2d 5858 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  .o  t
)  =  ( w  .o  D ) )
34 simpl 108 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  u  =  C )
3534oveq2d 5858 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .o  u
)  =  ( v  .o  C ) )
3633, 35oveq12d 5860 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( w  .o  t )  +o  (
v  .o  u ) )  =  ( ( w  .o  D )  +o  ( v  .o  C ) ) )
3732oveq2d 5858 . . . . . . . . . 10  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .o  t
)  =  ( v  .o  D ) )
3836, 37opeq12d 3766 . . . . . . . . 9  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >.  =  <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. )
3938eceq1d 6537 . . . . . . . 8  |-  ( ( u  =  C  /\  t  =  D )  ->  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  =  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  )
4039eqeq2d 2177 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  ->  ( [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  <->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( ( w  .o  D )  +o  ( v  .o  C
) ) ,  ( v  .o  D )
>. ] ~Q0  ) )
4131, 40anbi12d 465 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
4241spc2egv 2816 . . . . 5  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
43422eximdv 1870 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  D
)  +o  ( v  .o  C ) ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
4427, 43sylan9 407 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( (
( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
4511, 12, 44mp2ani 429 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
46 ecexg 6505 . . . 4  |-  ( ~Q0  e.  _V  ->  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  e.  _V )
472, 46ax-mp 5 . . 3  |-  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V
48 simp1 987 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  x  =  [ <. A ,  B >. ] ~Q0  )
4948eqeq1d 2174 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( x  =  [ <. w ,  v
>. ] ~Q0  <->  [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  ) )
50 simp2 988 . . . . . . . 8  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  y  =  [ <. C ,  D >. ] ~Q0  )
5150eqeq1d 2174 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( y  =  [ <. u ,  t
>. ] ~Q0  <->  [
<. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  ) )
5249, 51anbi12d 465 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( (
x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  ) ) )
53 simp3 989 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  z  =  [ <. ( ( A  .o  D )  +o  ( B  .o  C
) ) ,  ( B  .o  D )
>. ] ~Q0  )
5453eqeq1d 2174 . . . . . 6  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  <->  [
<. ( ( A  .o  D )  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) )
5552, 54anbi12d 465 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( (
( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
56554exbidv 1858 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )  ->  ( E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
57 addnq0mo 7388 . . . 4  |-  ( ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  ( v  .o  u
) ) ,  ( v  .o  t )
>. ] ~Q0  ) )
58 dfplq0qs 7371 . . . 4  |- +Q0  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( ( w  .o  t )  +o  (
v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  ) ) }
5956, 57, 58ovig 5963 . . 3  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) )
6047, 59mp3an3 1316 . 2  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( ( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
( w  .o  t
)  +o  ( v  .o  u ) ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  ) )
618, 45, 60sylc 62 1  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 +Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. (
( A  .o  D
)  +o  ( B  .o  C ) ) ,  ( B  .o  D ) >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   <.cop 3579   omcom 4567    X. cxp 4602  (class class class)co 5842    +o coa 6381    .o comu 6382   [cec 6499   /.cqs 6500   N.cnpi 7213   ~Q0 ceq0 7227   +Q0 cplq0 7230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq0 7365  df-nq0 7366  df-plq0 7368
This theorem is referenced by:  addclnq0  7392  nqpnq0nq  7394  nqnq0a  7395  nq0a0  7398  nnanq0  7399  distrnq0  7400  addassnq0  7403
  Copyright terms: Public domain W3C validator