ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3ss Unicode version

Theorem dfrab3ss 3405
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
Assertion
Ref Expression
dfrab3ss  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  =  ( A  i^i  { x  e.  B  |  ph } ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab3ss
StepHypRef Expression
1 df-ss 3134 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 ineq1 3321 . . . 4  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  i^i  { x  |  ph } )  =  ( A  i^i  {
x  |  ph }
) )
32eqcomd 2176 . . 3  |-  ( ( A  i^i  B )  =  A  ->  ( A  i^i  { x  | 
ph } )  =  ( ( A  i^i  B )  i^i  { x  |  ph } ) )
41, 3sylbi 120 . 2  |-  ( A 
C_  B  ->  ( A  i^i  { x  | 
ph } )  =  ( ( A  i^i  B )  i^i  { x  |  ph } ) )
5 dfrab3 3403 . 2  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
6 dfrab3 3403 . . . 4  |-  { x  e.  B  |  ph }  =  ( B  i^i  { x  |  ph }
)
76ineq2i 3325 . . 3  |-  ( A  i^i  { x  e.  B  |  ph }
)  =  ( A  i^i  ( B  i^i  { x  |  ph }
) )
8 inass 3337 . . 3  |-  ( ( A  i^i  B )  i^i  { x  | 
ph } )  =  ( A  i^i  ( B  i^i  { x  | 
ph } ) )
97, 8eqtr4i 2194 . 2  |-  ( A  i^i  { x  e.  B  |  ph }
)  =  ( ( A  i^i  B )  i^i  { x  | 
ph } )
104, 5, 93eqtr4g 2228 1  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  =  ( A  i^i  { x  e.  B  |  ph } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   {cab 2156   {crab 2452    i^i cin 3120    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator