Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfrab3ss | Unicode version |
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
Ref | Expression |
---|---|
dfrab3ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3129 | . . 3 | |
2 | ineq1 3316 | . . . 4 | |
3 | 2 | eqcomd 2171 | . . 3 |
4 | 1, 3 | sylbi 120 | . 2 |
5 | dfrab3 3398 | . 2 | |
6 | dfrab3 3398 | . . . 4 | |
7 | 6 | ineq2i 3320 | . . 3 |
8 | inass 3332 | . . 3 | |
9 | 7, 8 | eqtr4i 2189 | . 2 |
10 | 4, 5, 9 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cab 2151 crab 2448 cin 3115 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |