![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrab3ss | GIF version |
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
Ref | Expression |
---|---|
dfrab3ss | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3144 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ineq1 3331 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
3 | 2 | eqcomd 2183 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
4 | 1, 3 | sylbi 121 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
5 | dfrab3 3413 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
6 | dfrab3 3413 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
7 | 6 | ineq2i 3335 | . . 3 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
8 | inass 3347 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) | |
9 | 7, 8 | eqtr4i 2201 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) |
10 | 4, 5, 9 | 3eqtr4g 2235 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 {cab 2163 {crab 2459 ∩ cin 3130 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-in 3137 df-ss 3144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |