![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrab3ss | GIF version |
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
Ref | Expression |
---|---|
dfrab3ss | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3034 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ineq1 3217 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
3 | 2 | eqcomd 2105 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
4 | 1, 3 | sylbi 120 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
5 | dfrab3 3299 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
6 | dfrab3 3299 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
7 | 6 | ineq2i 3221 | . . 3 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
8 | inass 3233 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) | |
9 | 7, 8 | eqtr4i 2123 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) |
10 | 4, 5, 9 | 3eqtr4g 2157 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 {cab 2086 {crab 2379 ∩ cin 3020 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rab 2384 df-v 2643 df-in 3027 df-ss 3034 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |