ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3ss GIF version

Theorem dfrab3ss 3411
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
Assertion
Ref Expression
dfrab3ss (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3ss
StepHypRef Expression
1 df-ss 3140 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ineq1 3327 . . . 4 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑}))
32eqcomd 2181 . . 3 ((𝐴𝐵) = 𝐴 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
41, 3sylbi 121 . 2 (𝐴𝐵 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
5 dfrab3 3409 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
6 dfrab3 3409 . . . 4 {𝑥𝐵𝜑} = (𝐵 ∩ {𝑥𝜑})
76ineq2i 3331 . . 3 (𝐴 ∩ {𝑥𝐵𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
8 inass 3343 . . 3 ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
97, 8eqtr4i 2199 . 2 (𝐴 ∩ {𝑥𝐵𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑})
104, 5, 93eqtr4g 2233 1 (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  {cab 2161  {crab 2457  cin 3126  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462  df-v 2737  df-in 3133  df-ss 3140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator