ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notrab Unicode version

Theorem notrab 3458
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab  |-  ( A 
\  { x  e.  A  |  ph }
)  =  { x  e.  A  |  -.  ph }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3450 . 2  |-  ( { x  |  x  e.  A }  \  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  -.  ph ) }
2 difin 3418 . . 3  |-  ( A 
\  ( A  i^i  { x  |  ph }
) )  =  ( A  \  { x  |  ph } )
3 dfrab3 3457 . . . 4  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
43difeq2i 3296 . . 3  |-  ( A 
\  { x  e.  A  |  ph }
)  =  ( A 
\  ( A  i^i  { x  |  ph }
) )
5 abid2 2328 . . . 4  |-  { x  |  x  e.  A }  =  A
65difeq1i 3295 . . 3  |-  ( { x  |  x  e.  A }  \  {
x  |  ph }
)  =  ( A 
\  { x  | 
ph } )
72, 4, 63eqtr4i 2238 . 2  |-  ( A 
\  { x  e.  A  |  ph }
)  =  ( { x  |  x  e.  A }  \  {
x  |  ph }
)
8 df-rab 2495 . 2  |-  { x  e.  A  |  -.  ph }  =  { x  |  ( x  e.  A  /\  -.  ph ) }
91, 7, 83eqtr4i 2238 1  |-  ( A 
\  { x  e.  A  |  ph }
)  =  { x  e.  A  |  -.  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   {crab 2490    \ cdif 3171    i^i cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-dif 3176  df-in 3180
This theorem is referenced by:  diffitest  7010
  Copyright terms: Public domain W3C validator