Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notrab | Unicode version |
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
notrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difab 3396 | . 2 | |
2 | difin 3364 | . . 3 | |
3 | dfrab3 3403 | . . . 4 | |
4 | 3 | difeq2i 3242 | . . 3 |
5 | abid2 2291 | . . . 4 | |
6 | 5 | difeq1i 3241 | . . 3 |
7 | 2, 4, 6 | 3eqtr4i 2201 | . 2 |
8 | df-rab 2457 | . 2 | |
9 | 1, 7, 8 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wceq 1348 wcel 2141 cab 2156 crab 2452 cdif 3118 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-in 3127 |
This theorem is referenced by: diffitest 6861 |
Copyright terms: Public domain | W3C validator |