ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3 Unicode version

Theorem dfrab3 3457
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2495 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 inab 3449 . 2  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  ph ) }
3 abid2 2328 . . 3  |-  { x  |  x  e.  A }  =  A
43ineq1i 3378 . 2  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  ( A  i^i  { x  | 
ph } )
51, 2, 43eqtr2i 2234 1  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   {crab 2490    i^i cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-in 3180
This theorem is referenced by:  notrab  3458  dfrab3ss  3459  dfif3  3593  dfse2  5074
  Copyright terms: Public domain W3C validator