Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabun2 | Unicode version |
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
Ref | Expression |
---|---|
rabun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2453 | . 2 | |
2 | df-rab 2453 | . . . 4 | |
3 | df-rab 2453 | . . . 4 | |
4 | 2, 3 | uneq12i 3274 | . . 3 |
5 | elun 3263 | . . . . . . 7 | |
6 | 5 | anbi1i 454 | . . . . . 6 |
7 | andir 809 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | 8 | abbii 2282 | . . . 4 |
10 | unab 3389 | . . . 4 | |
11 | 9, 10 | eqtr4i 2189 | . . 3 |
12 | 4, 11 | eqtr4i 2189 | . 2 |
13 | 1, 12 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 crab 2448 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 |
This theorem is referenced by: ssfirab 6899 |
Copyright terms: Public domain | W3C validator |