ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabun2 Unicode version

Theorem rabun2 3416
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 2464 . 2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  { x  |  ( x  e.  ( A  u.  B )  /\  ph ) }
2 df-rab 2464 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2464 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
42, 3uneq12i 3289 . . 3  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
5 elun 3278 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 819 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
86, 7bitri 184 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
98abbii 2293 . . . 4  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
10 unab 3404 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
119, 10eqtr4i 2201 . . 3  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
124, 11eqtr4i 2201 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }
131, 12eqtr4i 2201 1  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   {cab 2163   {crab 2459    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-un 3135
This theorem is referenced by:  ssfirab  6935
  Copyright terms: Public domain W3C validator