ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabun2 Unicode version

Theorem rabun2 3401
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 2453 . 2  |-  { x  e.  ( A  u.  B
)  |  ph }  =  { x  |  ( x  e.  ( A  u.  B )  /\  ph ) }
2 df-rab 2453 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
3 df-rab 2453 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
42, 3uneq12i 3274 . . 3  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
5 elun 3263 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 454 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
7 andir 809 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
86, 7bitri 183 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
98abbii 2282 . . . 4  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
10 unab 3389 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) }
119, 10eqtr4i 2189 . . 3  |-  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  u.  { x  |  ( x  e.  B  /\  ph ) } )
124, 11eqtr4i 2189 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph }
)  =  { x  |  ( x  e.  ( A  u.  B
)  /\  ph ) }
131, 12eqtr4i 2189 1  |-  { x  e.  ( A  u.  B
)  |  ph }  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   {cab 2151   {crab 2448    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120
This theorem is referenced by:  ssfirab  6899
  Copyright terms: Public domain W3C validator