ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuni2 Unicode version

Theorem dfuni2 3866
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfuni2  |-  U. A  =  { x  |  E. y  e.  A  x  e.  y }
Distinct variable group:    x, y, A

Proof of Theorem dfuni2
StepHypRef Expression
1 df-uni 3865 . 2  |-  U. A  =  { x  |  E. y ( x  e.  y  /\  y  e.  A ) }
2 exancom 1632 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  A )  <->  E. y
( y  e.  A  /\  x  e.  y
) )
3 df-rex 2492 . . . 4  |-  ( E. y  e.  A  x  e.  y  <->  E. y
( y  e.  A  /\  x  e.  y
) )
42, 3bitr4i 187 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  A )  <->  E. y  e.  A  x  e.  y )
54abbii 2323 . 2  |-  { x  |  E. y ( x  e.  y  /\  y  e.  A ) }  =  { x  |  E. y  e.  A  x  e.  y }
61, 5eqtri 2228 1  |-  U. A  =  { x  |  E. y  e.  A  x  e.  y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   E.wrex 2487   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-rex 2492  df-uni 3865
This theorem is referenced by:  nfuni  3870  nfunid  3871  unieq  3873  uniiun  3995
  Copyright terms: Public domain W3C validator