ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuni2 Unicode version

Theorem dfuni2 3889
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfuni2  |-  U. A  =  { x  |  E. y  e.  A  x  e.  y }
Distinct variable group:    x, y, A

Proof of Theorem dfuni2
StepHypRef Expression
1 df-uni 3888 . 2  |-  U. A  =  { x  |  E. y ( x  e.  y  /\  y  e.  A ) }
2 exancom 1654 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  A )  <->  E. y
( y  e.  A  /\  x  e.  y
) )
3 df-rex 2514 . . . 4  |-  ( E. y  e.  A  x  e.  y  <->  E. y
( y  e.  A  /\  x  e.  y
) )
42, 3bitr4i 187 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  A )  <->  E. y  e.  A  x  e.  y )
54abbii 2345 . 2  |-  { x  |  E. y ( x  e.  y  /\  y  e.  A ) }  =  { x  |  E. y  e.  A  x  e.  y }
61, 5eqtri 2250 1  |-  U. A  =  { x  |  E. y  e.  A  x  e.  y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   U.cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-rex 2514  df-uni 3888
This theorem is referenced by:  nfuni  3893  nfunid  3894  unieq  3896  uniiun  4018
  Copyright terms: Public domain W3C validator