Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfuni2 | Unicode version |
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfuni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni 3797 | . 2 | |
2 | exancom 1601 | . . . 4 | |
3 | df-rex 2454 | . . . 4 | |
4 | 2, 3 | bitr4i 186 | . . 3 |
5 | 4 | abbii 2286 | . 2 |
6 | 1, 5 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 wrex 2449 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-rex 2454 df-uni 3797 |
This theorem is referenced by: nfuni 3802 nfunid 3803 unieq 3805 uniiun 3926 |
Copyright terms: Public domain | W3C validator |