Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfuni2 | Unicode version |
Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfuni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni 3790 | . 2 | |
2 | exancom 1596 | . . . 4 | |
3 | df-rex 2450 | . . . 4 | |
4 | 2, 3 | bitr4i 186 | . . 3 |
5 | 4 | abbii 2282 | . 2 |
6 | 1, 5 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 wrex 2445 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-rex 2450 df-uni 3790 |
This theorem is referenced by: nfuni 3795 nfunid 3796 unieq 3798 uniiun 3919 |
Copyright terms: Public domain | W3C validator |