ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfuni Unicode version

Theorem nfuni 3870
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1  |-  F/_ x A
Assertion
Ref Expression
nfuni  |-  F/_ x U. A

Proof of Theorem nfuni
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3866 . 2  |-  U. A  =  { y  |  E. z  e.  A  y  e.  z }
2 nfuni.1 . . . 4  |-  F/_ x A
3 nfv 1552 . . . 4  |-  F/ x  y  e.  z
42, 3nfrexw 2547 . . 3  |-  F/ x E. z  e.  A  y  e.  z
54nfab 2355 . 2  |-  F/_ x { y  |  E. z  e.  A  y  e.  z }
61, 5nfcxfr 2347 1  |-  F/_ x U. A
Colors of variables: wff set class
Syntax hints:   {cab 2193   F/_wnfc 2337   E.wrex 2487   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-uni 3865
This theorem is referenced by:  nfiota1  5253  iotaexab  5269  nfrecs  6416  nfsup  7120
  Copyright terms: Public domain W3C validator