| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluni | Unicode version | ||
| Description: Membership in class union. (Contributed by NM, 22-May-1994.) |
| Ref | Expression |
|---|---|
| eluni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | 3 | exlimiv 1612 |
. 2
|
| 5 | eleq1 2259 |
. . . . 5
| |
| 6 | 5 | anbi1d 465 |
. . . 4
|
| 7 | 6 | exbidv 1839 |
. . 3
|
| 8 | df-uni 3841 |
. . 3
| |
| 9 | 7, 8 | elab2g 2911 |
. 2
|
| 10 | 1, 4, 9 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-uni 3841 |
| This theorem is referenced by: eluni2 3844 elunii 3845 eluniab 3852 uniun 3859 uniin 3860 uniss 3861 unissb 3870 dftr2 4134 unidif0 4201 unipw 4251 uniex2 4472 uniuni 4487 limom 4651 dmuni 4877 fununi 5327 nfvres 5595 elunirn 5816 tfrlem7 6384 tfrexlem 6401 tfrcldm 6430 fiuni 7053 isbasis2g 14365 tgval2 14371 ntreq0 14452 bj-uniex2 15646 |
| Copyright terms: Public domain | W3C validator |