ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni Unicode version

Theorem eluni 3853
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eluni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  U. B  ->  A  e.  _V )
2 elex 2783 . . . 4  |-  ( A  e.  x  ->  A  e.  _V )
32adantr 276 . . 3  |-  ( ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
43exlimiv 1621 . 2  |-  ( E. x ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
5 eleq1 2268 . . . . 5  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
65anbi1d 465 . . . 4  |-  ( y  =  A  ->  (
( y  e.  x  /\  x  e.  B
)  <->  ( A  e.  x  /\  x  e.  B ) ) )
76exbidv 1848 . . 3  |-  ( y  =  A  ->  ( E. x ( y  e.  x  /\  x  e.  B )  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
8 df-uni 3851 . . 3  |-  U. B  =  { y  |  E. x ( y  e.  x  /\  x  e.  B ) }
97, 8elab2g 2920 . 2  |-  ( A  e.  _V  ->  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
101, 4, 9pm5.21nii 706 1  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-uni 3851
This theorem is referenced by:  eluni2  3854  elunii  3855  eluniab  3862  uniun  3869  uniin  3870  uniss  3871  unissb  3880  dftr2  4144  unidif0  4211  unipw  4261  uniex2  4483  uniuni  4498  limom  4662  dmuni  4888  fununi  5342  nfvres  5610  elunirn  5835  tfrlem7  6403  tfrexlem  6420  tfrcldm  6449  fiuni  7080  isbasis2g  14517  tgval2  14523  ntreq0  14604  bj-uniex2  15852
  Copyright terms: Public domain W3C validator