ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni Unicode version

Theorem eluni 3812
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eluni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2748 . 2  |-  ( A  e.  U. B  ->  A  e.  _V )
2 elex 2748 . . . 4  |-  ( A  e.  x  ->  A  e.  _V )
32adantr 276 . . 3  |-  ( ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
43exlimiv 1598 . 2  |-  ( E. x ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
5 eleq1 2240 . . . . 5  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
65anbi1d 465 . . . 4  |-  ( y  =  A  ->  (
( y  e.  x  /\  x  e.  B
)  <->  ( A  e.  x  /\  x  e.  B ) ) )
76exbidv 1825 . . 3  |-  ( y  =  A  ->  ( E. x ( y  e.  x  /\  x  e.  B )  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
8 df-uni 3810 . . 3  |-  U. B  =  { y  |  E. x ( y  e.  x  /\  x  e.  B ) }
97, 8elab2g 2884 . 2  |-  ( A  e.  _V  ->  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
101, 4, 9pm5.21nii 704 1  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   U.cuni 3809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-uni 3810
This theorem is referenced by:  eluni2  3813  elunii  3814  eluniab  3821  uniun  3828  uniin  3829  uniss  3830  unissb  3839  dftr2  4103  unidif0  4167  unipw  4217  uniex2  4436  uniuni  4451  limom  4613  dmuni  4837  fununi  5284  nfvres  5548  elunirn  5766  tfrlem7  6317  tfrexlem  6334  tfrcldm  6363  fiuni  6976  isbasis2g  13515  tgval2  13521  ntreq0  13602  bj-uniex2  14638
  Copyright terms: Public domain W3C validator