ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni Unicode version

Theorem eluni 3867
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eluni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2788 . 2  |-  ( A  e.  U. B  ->  A  e.  _V )
2 elex 2788 . . . 4  |-  ( A  e.  x  ->  A  e.  _V )
32adantr 276 . . 3  |-  ( ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
43exlimiv 1622 . 2  |-  ( E. x ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
5 eleq1 2270 . . . . 5  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
65anbi1d 465 . . . 4  |-  ( y  =  A  ->  (
( y  e.  x  /\  x  e.  B
)  <->  ( A  e.  x  /\  x  e.  B ) ) )
76exbidv 1849 . . 3  |-  ( y  =  A  ->  ( E. x ( y  e.  x  /\  x  e.  B )  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
8 df-uni 3865 . . 3  |-  U. B  =  { y  |  E. x ( y  e.  x  /\  x  e.  B ) }
97, 8elab2g 2927 . 2  |-  ( A  e.  _V  ->  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
101, 4, 9pm5.21nii 706 1  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-uni 3865
This theorem is referenced by:  eluni2  3868  elunii  3869  eluniab  3876  uniun  3883  uniin  3884  uniss  3885  unissb  3894  dftr2  4160  unidif0  4227  unipw  4279  uniex2  4501  uniuni  4516  limom  4680  dmuni  4907  fununi  5361  nfvres  5633  elunirn  5858  tfrlem7  6426  tfrexlem  6443  tfrcldm  6472  fiuni  7106  isbasis2g  14632  tgval2  14638  ntreq0  14719  bj-uniex2  16051
  Copyright terms: Public domain W3C validator