ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni Unicode version

Theorem eluni 3792
Description: Membership in class union. (Contributed by NM, 22-May-1994.)
Assertion
Ref Expression
eluni  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eluni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  U. B  ->  A  e.  _V )
2 elex 2737 . . . 4  |-  ( A  e.  x  ->  A  e.  _V )
32adantr 274 . . 3  |-  ( ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
43exlimiv 1586 . 2  |-  ( E. x ( A  e.  x  /\  x  e.  B )  ->  A  e.  _V )
5 eleq1 2229 . . . . 5  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
65anbi1d 461 . . . 4  |-  ( y  =  A  ->  (
( y  e.  x  /\  x  e.  B
)  <->  ( A  e.  x  /\  x  e.  B ) ) )
76exbidv 1813 . . 3  |-  ( y  =  A  ->  ( E. x ( y  e.  x  /\  x  e.  B )  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
8 df-uni 3790 . . 3  |-  U. B  =  { y  |  E. x ( y  e.  x  /\  x  e.  B ) }
97, 8elab2g 2873 . 2  |-  ( A  e.  _V  ->  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) ) )
101, 4, 9pm5.21nii 694 1  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-uni 3790
This theorem is referenced by:  eluni2  3793  elunii  3794  eluniab  3801  uniun  3808  uniin  3809  uniss  3810  unissb  3819  dftr2  4082  unidif0  4146  unipw  4195  uniex2  4414  uniuni  4429  limom  4591  dmuni  4814  fununi  5256  nfvres  5519  elunirn  5734  tfrlem7  6285  tfrexlem  6302  tfrcldm  6331  fiuni  6943  isbasis2g  12683  tgval2  12691  ntreq0  12772  bj-uniex2  13798
  Copyright terms: Public domain W3C validator