ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difpr Unicode version

Theorem difpr 3810
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 3673 . . 3  |-  { B ,  C }  =  ( { B }  u.  { C } )
21difeq2i 3319 . 2  |-  ( A 
\  { B ,  C } )  =  ( A  \  ( { B }  u.  { C } ) )
3 difun1 3464 . 2  |-  ( A 
\  ( { B }  u.  { C } ) )  =  ( ( A  \  { B } )  \  { C } )
42, 3eqtri 2250 1  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    \ cdif 3194    u. cun 3195   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-pr 3673
This theorem is referenced by:  hashdifpr  11042
  Copyright terms: Public domain W3C validator