ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difpr Unicode version

Theorem difpr 3715
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 3583 . . 3  |-  { B ,  C }  =  ( { B }  u.  { C } )
21difeq2i 3237 . 2  |-  ( A 
\  { B ,  C } )  =  ( A  \  ( { B }  u.  { C } ) )
3 difun1 3382 . 2  |-  ( A 
\  ( { B }  u.  { C } ) )  =  ( ( A  \  { B } )  \  { C } )
42, 3eqtri 2186 1  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    \ cdif 3113    u. cun 3114   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-pr 3583
This theorem is referenced by:  hashdifpr  10733
  Copyright terms: Public domain W3C validator