ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difpr Unicode version

Theorem difpr 3775
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
Assertion
Ref Expression
difpr  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )

Proof of Theorem difpr
StepHypRef Expression
1 df-pr 3640 . . 3  |-  { B ,  C }  =  ( { B }  u.  { C } )
21difeq2i 3288 . 2  |-  ( A 
\  { B ,  C } )  =  ( A  \  ( { B }  u.  { C } ) )
3 difun1 3433 . 2  |-  ( A 
\  ( { B }  u.  { C } ) )  =  ( ( A  \  { B } )  \  { C } )
42, 3eqtri 2226 1  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3163    u. cun 3164   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-pr 3640
This theorem is referenced by:  hashdifpr  10965
  Copyright terms: Public domain W3C validator