| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difpr | GIF version | ||
| Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
| Ref | Expression |
|---|---|
| difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 2 | 1 | difeq2i 3319 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
| 3 | difun1 3464 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
| 4 | 2, 3 | eqtri 2250 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∖ cdif 3194 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-pr 3673 |
| This theorem is referenced by: hashdifpr 11037 |
| Copyright terms: Public domain | W3C validator |