![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difpr | GIF version |
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
Ref | Expression |
---|---|
difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3625 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
2 | 1 | difeq2i 3274 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
3 | difun1 3419 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
4 | 2, 3 | eqtri 2214 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∖ cdif 3150 ∪ cun 3151 {csn 3618 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-pr 3625 |
This theorem is referenced by: hashdifpr 10891 |
Copyright terms: Public domain | W3C validator |