![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difpr | GIF version |
Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
Ref | Expression |
---|---|
difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3601 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
2 | 1 | difeq2i 3252 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
3 | difun1 3397 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
4 | 2, 3 | eqtri 2198 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∖ cdif 3128 ∪ cun 3129 {csn 3594 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-pr 3601 |
This theorem is referenced by: hashdifpr 10802 |
Copyright terms: Public domain | W3C validator |