| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difpr | GIF version | ||
| Description: Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.) |
| Ref | Expression |
|---|---|
| difpr | ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3644 | . . 3 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 2 | 1 | difeq2i 3292 | . 2 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = (𝐴 ∖ ({𝐵} ∪ {𝐶})) |
| 3 | difun1 3437 | . 2 ⊢ (𝐴 ∖ ({𝐵} ∪ {𝐶})) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
| 4 | 2, 3 | eqtri 2227 | 1 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∖ cdif 3167 ∪ cun 3168 {csn 3637 {cpr 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-pr 3644 |
| This theorem is referenced by: hashdifpr 10982 |
| Copyright terms: Public domain | W3C validator |