Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
diftpsn3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3584 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | difeq1d 3239 | . 2 |
4 | difundir 3375 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | df-pr 3583 | . . . . . . . . 9 | |
7 | 6 | a1i 9 | . . . . . . . 8 |
8 | 7 | ineq1d 3322 | . . . . . . 7 |
9 | incom 3314 | . . . . . . . . 9 | |
10 | indi 3369 | . . . . . . . . 9 | |
11 | 9, 10 | eqtri 2186 | . . . . . . . 8 |
12 | 11 | a1i 9 | . . . . . . 7 |
13 | necom 2420 | . . . . . . . . . . 11 | |
14 | disjsn2 3639 | . . . . . . . . . . 11 | |
15 | 13, 14 | sylbi 120 | . . . . . . . . . 10 |
16 | 15 | adantr 274 | . . . . . . . . 9 |
17 | necom 2420 | . . . . . . . . . . 11 | |
18 | disjsn2 3639 | . . . . . . . . . . 11 | |
19 | 17, 18 | sylbi 120 | . . . . . . . . . 10 |
20 | 19 | adantl 275 | . . . . . . . . 9 |
21 | 16, 20 | uneq12d 3277 | . . . . . . . 8 |
22 | unidm 3265 | . . . . . . . 8 | |
23 | 21, 22 | eqtrdi 2215 | . . . . . . 7 |
24 | 8, 12, 23 | 3eqtrd 2202 | . . . . . 6 |
25 | disj3 3461 | . . . . . 6 | |
26 | 24, 25 | sylib 121 | . . . . 5 |
27 | 26 | eqcomd 2171 | . . . 4 |
28 | difid 3477 | . . . . 5 | |
29 | 28 | a1i 9 | . . . 4 |
30 | 27, 29 | uneq12d 3277 | . . 3 |
31 | un0 3442 | . . 3 | |
32 | 30, 31 | eqtrdi 2215 | . 2 |
33 | 3, 5, 32 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wne 2336 cdif 3113 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 ctp 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-tp 3584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |