| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3640 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | difeq1d 3289 |
. 2
|
| 4 | difundir 3425 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | df-pr 3639 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 9 |
. . . . . . . 8
|
| 8 | 7 | ineq1d 3372 |
. . . . . . 7
|
| 9 | incom 3364 |
. . . . . . . . 9
| |
| 10 | indi 3419 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2225 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | necom 2459 |
. . . . . . . . . . 11
| |
| 14 | disjsn2 3695 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | sylbi 121 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | necom 2459 |
. . . . . . . . . . 11
| |
| 18 | disjsn2 3695 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sylbi 121 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 277 |
. . . . . . . . 9
|
| 21 | 16, 20 | uneq12d 3327 |
. . . . . . . 8
|
| 22 | unidm 3315 |
. . . . . . . 8
| |
| 23 | 21, 22 | eqtrdi 2253 |
. . . . . . 7
|
| 24 | 8, 12, 23 | 3eqtrd 2241 |
. . . . . 6
|
| 25 | disj3 3512 |
. . . . . 6
| |
| 26 | 24, 25 | sylib 122 |
. . . . 5
|
| 27 | 26 | eqcomd 2210 |
. . . 4
|
| 28 | difid 3528 |
. . . . 5
| |
| 29 | 28 | a1i 9 |
. . . 4
|
| 30 | 27, 29 | uneq12d 3327 |
. . 3
|
| 31 | un0 3493 |
. . 3
| |
| 32 | 30, 31 | eqtrdi 2253 |
. 2
|
| 33 | 3, 5, 32 | 3eqtrd 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-pr 3639 df-tp 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |