Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
diftpsn3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3591 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | difeq1d 3244 | . 2 |
4 | difundir 3380 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | df-pr 3590 | . . . . . . . . 9 | |
7 | 6 | a1i 9 | . . . . . . . 8 |
8 | 7 | ineq1d 3327 | . . . . . . 7 |
9 | incom 3319 | . . . . . . . . 9 | |
10 | indi 3374 | . . . . . . . . 9 | |
11 | 9, 10 | eqtri 2191 | . . . . . . . 8 |
12 | 11 | a1i 9 | . . . . . . 7 |
13 | necom 2424 | . . . . . . . . . . 11 | |
14 | disjsn2 3646 | . . . . . . . . . . 11 | |
15 | 13, 14 | sylbi 120 | . . . . . . . . . 10 |
16 | 15 | adantr 274 | . . . . . . . . 9 |
17 | necom 2424 | . . . . . . . . . . 11 | |
18 | disjsn2 3646 | . . . . . . . . . . 11 | |
19 | 17, 18 | sylbi 120 | . . . . . . . . . 10 |
20 | 19 | adantl 275 | . . . . . . . . 9 |
21 | 16, 20 | uneq12d 3282 | . . . . . . . 8 |
22 | unidm 3270 | . . . . . . . 8 | |
23 | 21, 22 | eqtrdi 2219 | . . . . . . 7 |
24 | 8, 12, 23 | 3eqtrd 2207 | . . . . . 6 |
25 | disj3 3467 | . . . . . 6 | |
26 | 24, 25 | sylib 121 | . . . . 5 |
27 | 26 | eqcomd 2176 | . . . 4 |
28 | difid 3483 | . . . . 5 | |
29 | 28 | a1i 9 | . . . 4 |
30 | 27, 29 | uneq12d 3282 | . . 3 |
31 | un0 3448 | . . 3 | |
32 | 30, 31 | eqtrdi 2219 | . 2 |
33 | 3, 5, 32 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wne 2340 cdif 3118 cun 3119 cin 3120 c0 3414 csn 3583 cpr 3584 ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-tp 3591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |