| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3674 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | difeq1d 3321 |
. 2
|
| 4 | difundir 3457 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | df-pr 3673 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 9 |
. . . . . . . 8
|
| 8 | 7 | ineq1d 3404 |
. . . . . . 7
|
| 9 | incom 3396 |
. . . . . . . . 9
| |
| 10 | indi 3451 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2250 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | necom 2484 |
. . . . . . . . . . 11
| |
| 14 | disjsn2 3729 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | sylbi 121 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | necom 2484 |
. . . . . . . . . . 11
| |
| 18 | disjsn2 3729 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sylbi 121 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 277 |
. . . . . . . . 9
|
| 21 | 16, 20 | uneq12d 3359 |
. . . . . . . 8
|
| 22 | unidm 3347 |
. . . . . . . 8
| |
| 23 | 21, 22 | eqtrdi 2278 |
. . . . . . 7
|
| 24 | 8, 12, 23 | 3eqtrd 2266 |
. . . . . 6
|
| 25 | disj3 3544 |
. . . . . 6
| |
| 26 | 24, 25 | sylib 122 |
. . . . 5
|
| 27 | 26 | eqcomd 2235 |
. . . 4
|
| 28 | difid 3560 |
. . . . 5
| |
| 29 | 28 | a1i 9 |
. . . 4
|
| 30 | 27, 29 | uneq12d 3359 |
. . 3
|
| 31 | un0 3525 |
. . 3
| |
| 32 | 30, 31 | eqtrdi 2278 |
. 2
|
| 33 | 3, 5, 32 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |