ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diftpsn3 Unicode version

Theorem diftpsn3 3774
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
diftpsn3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )

Proof of Theorem diftpsn3
StepHypRef Expression
1 df-tp 3641 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
21a1i 9 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
32difeq1d 3290 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  ( ( { A ,  B }  u.  { C } ) 
\  { C }
) )
4 difundir 3426 . . 3  |-  ( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )
54a1i 9 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) ) )
6 df-pr 3640 . . . . . . . . 9  |-  { A ,  B }  =  ( { A }  u.  { B } )
76a1i 9 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A }  u.  { B } ) )
87ineq1d 3373 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  ( ( { A }  u.  { B } )  i^i  { C }
) )
9 incom 3365 . . . . . . . . 9  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( { C }  i^i  ( { A }  u.  { B } ) )
10 indi 3420 . . . . . . . . 9  |-  ( { C }  i^i  ( { A }  u.  { B } ) )  =  ( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )
119, 10eqtri 2226 . . . . . . . 8  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B } ) )
1211a1i 9 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B }
) ) )
13 necom 2460 . . . . . . . . . . 11  |-  ( A  =/=  C  <->  C  =/=  A )
14 disjsn2 3696 . . . . . . . . . . 11  |-  ( C  =/=  A  ->  ( { C }  i^i  { A } )  =  (/) )
1513, 14sylbi 121 . . . . . . . . . 10  |-  ( A  =/=  C  ->  ( { C }  i^i  { A } )  =  (/) )
1615adantr 276 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { A } )  =  (/) )
17 necom 2460 . . . . . . . . . . 11  |-  ( B  =/=  C  <->  C  =/=  B )
18 disjsn2 3696 . . . . . . . . . . 11  |-  ( C  =/=  B  ->  ( { C }  i^i  { B } )  =  (/) )
1917, 18sylbi 121 . . . . . . . . . 10  |-  ( B  =/=  C  ->  ( { C }  i^i  { B } )  =  (/) )
2019adantl 277 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { B } )  =  (/) )
2116, 20uneq12d 3328 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  ( (/)  u.  (/) ) )
22 unidm 3316 . . . . . . . 8  |-  ( (/)  u.  (/) )  =  (/)
2321, 22eqtrdi 2254 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  (/) )
248, 12, 233eqtrd 2242 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
25 disj3 3513 . . . . . 6  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  { A ,  B }  =  ( { A ,  B }  \  { C }
) )
2624, 25sylib 122 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A ,  B }  \  { C } ) )
2726eqcomd 2211 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  \  { C } )  =  { A ,  B }
)
28 difid 3529 . . . . 5  |-  ( { C }  \  { C } )  =  (/)
2928a1i 9 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  \  { C } )  =  (/) )
3027, 29uneq12d 3328 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  ( { A ,  B }  u.  (/) ) )
31 un0 3494 . . 3  |-  ( { A ,  B }  u.  (/) )  =  { A ,  B }
3230, 31eqtrdi 2254 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  { A ,  B } )
333, 5, 323eqtrd 2242 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    =/= wne 2376    \ cdif 3163    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   {cpr 3634   {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator