| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3651 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | difeq1d 3298 |
. 2
|
| 4 | difundir 3434 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | df-pr 3650 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 9 |
. . . . . . . 8
|
| 8 | 7 | ineq1d 3381 |
. . . . . . 7
|
| 9 | incom 3373 |
. . . . . . . . 9
| |
| 10 | indi 3428 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2228 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | necom 2462 |
. . . . . . . . . . 11
| |
| 14 | disjsn2 3706 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | sylbi 121 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | necom 2462 |
. . . . . . . . . . 11
| |
| 18 | disjsn2 3706 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sylbi 121 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 277 |
. . . . . . . . 9
|
| 21 | 16, 20 | uneq12d 3336 |
. . . . . . . 8
|
| 22 | unidm 3324 |
. . . . . . . 8
| |
| 23 | 21, 22 | eqtrdi 2256 |
. . . . . . 7
|
| 24 | 8, 12, 23 | 3eqtrd 2244 |
. . . . . 6
|
| 25 | disj3 3521 |
. . . . . 6
| |
| 26 | 24, 25 | sylib 122 |
. . . . 5
|
| 27 | 26 | eqcomd 2213 |
. . . 4
|
| 28 | difid 3537 |
. . . . 5
| |
| 29 | 28 | a1i 9 |
. . . 4
|
| 30 | 27, 29 | uneq12d 3336 |
. . 3
|
| 31 | un0 3502 |
. . 3
| |
| 32 | 30, 31 | eqtrdi 2256 |
. 2
|
| 33 | 3, 5, 32 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-tp 3651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |