| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disj2 | GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3226 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | reldisj 3523 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1375 Vcvv 2779 ∖ cdif 3174 ∩ cin 3176 ⊆ wss 3177 ∅c0 3471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-nul 3472 |
| This theorem is referenced by: ssindif0im 3531 intirr 5091 setsresg 13036 setscom 13038 |
| Copyright terms: Public domain | W3C validator |