![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disj2 | GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3061 | . 2 ⊢ 𝐴 ⊆ V | |
2 | reldisj 3353 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1296 Vcvv 2633 ∖ cdif 3010 ∩ cin 3012 ⊆ wss 3013 ∅c0 3302 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-dif 3015 df-in 3019 df-ss 3026 df-nul 3303 |
This theorem is referenced by: ssindif0im 3361 intirr 4851 setsresg 11681 setscom 11683 |
Copyright terms: Public domain | W3C validator |