| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disj2 | GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| disj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3246 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | reldisj 3543 | . 2 ⊢ (𝐴 ⊆ V → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (V ∖ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 Vcvv 2799 ∖ cdif 3194 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: ssindif0im 3551 intirr 5115 setsresg 13078 setscom 13080 |
| Copyright terms: Public domain | W3C validator |