ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjel Unicode version

Theorem disjel 3515
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
Assertion
Ref Expression
disjel  |-  ( ( ( A  i^i  B
)  =  (/)  /\  C  e.  A )  ->  -.  C  e.  B )

Proof of Theorem disjel
StepHypRef Expression
1 disj3 3513 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  A  =  ( A  \  B ) )
2 eleq2 2269 . . . 4  |-  ( A  =  ( A  \  B )  ->  ( C  e.  A  <->  C  e.  ( A  \  B ) ) )
3 eldifn 3296 . . . 4  |-  ( C  e.  ( A  \  B )  ->  -.  C  e.  B )
42, 3biimtrdi 163 . . 3  |-  ( A  =  ( A  \  B )  ->  ( C  e.  A  ->  -.  C  e.  B ) )
51, 4sylbi 121 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( C  e.  A  ->  -.  C  e.  B )
)
65imp 124 1  |-  ( ( ( A  i^i  B
)  =  (/)  /\  C  e.  A )  ->  -.  C  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    \ cdif 3163    i^i cin 3165   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-nul 3461
This theorem is referenced by:  fvun1  5645  ctssdccl  7213  fsumsplit  11718  fprodsplitdc  11907  fprodsplit  11908
  Copyright terms: Public domain W3C validator