Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjssun | GIF version |
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjssun | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 3374 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | |
2 | 1 | equncomi 3273 | . . . 4 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵)) |
3 | uneq2 3275 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵)) = ((𝐴 ∩ 𝐶) ∪ ∅)) | |
4 | un0 3448 | . . . . 5 ⊢ ((𝐴 ∩ 𝐶) ∪ ∅) = (𝐴 ∩ 𝐶) | |
5 | 3, 4 | eqtrdi 2219 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐶) ∪ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐶)) |
6 | 2, 5 | eqtrid 2215 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∩ (𝐵 ∪ 𝐶)) = (𝐴 ∩ 𝐶)) |
7 | 6 | eqeq1d 2179 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ (𝐵 ∪ 𝐶)) = 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐴)) |
8 | df-ss 3134 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∩ (𝐵 ∪ 𝐶)) = 𝐴) | |
9 | df-ss 3134 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐴 ∩ 𝐶) = 𝐴) | |
10 | 7, 8, 9 | 3bitr4g 222 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∪ cun 3119 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |