ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjssun GIF version

Theorem disjssun 3343
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))

Proof of Theorem disjssun
StepHypRef Expression
1 indi 3244 . . . . 5 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21equncomi 3144 . . . 4 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐶) ∪ (𝐴𝐵))
3 uneq2 3146 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴𝐶) ∪ (𝐴𝐵)) = ((𝐴𝐶) ∪ ∅))
4 un0 3314 . . . . 5 ((𝐴𝐶) ∪ ∅) = (𝐴𝐶)
53, 4syl6eq 2136 . . . 4 ((𝐴𝐵) = ∅ → ((𝐴𝐶) ∪ (𝐴𝐵)) = (𝐴𝐶))
62, 5syl5eq 2132 . . 3 ((𝐴𝐵) = ∅ → (𝐴 ∩ (𝐵𝐶)) = (𝐴𝐶))
76eqeq1d 2096 . 2 ((𝐴𝐵) = ∅ → ((𝐴 ∩ (𝐵𝐶)) = 𝐴 ↔ (𝐴𝐶) = 𝐴))
8 df-ss 3010 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴 ∩ (𝐵𝐶)) = 𝐴)
9 df-ss 3010 . 2 (𝐴𝐶 ↔ (𝐴𝐶) = 𝐴)
107, 8, 93bitr4g 221 1 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1289  cun 2995  cin 2996  wss 2997  c0 3284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator