ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2 Unicode version

Theorem uneq2 3295
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
uneq2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )

Proof of Theorem uneq2
StepHypRef Expression
1 uneq1 3294 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
2 uncom 3291 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3291 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33eqtr4g 2245 1  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    u. cun 3139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145
This theorem is referenced by:  uneq12  3296  uneq2i  3298  uneq2d  3301  uneqin  3398  disjssun  3498  uniprg  3836  sucprc  4424  unexb  4454  unfiexmid  6931  unfidisj  6935  hashunlem  10798  bdunexb  14968  bj-unexg  14969
  Copyright terms: Public domain W3C validator