ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2 Unicode version

Theorem uneq2 3329
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
uneq2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )

Proof of Theorem uneq2
StepHypRef Expression
1 uneq1 3328 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
2 uncom 3325 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3325 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33eqtr4g 2265 1  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  uneq12  3330  uneq2i  3332  uneq2d  3335  uneqin  3432  disjssun  3532  uniprg  3879  sucprc  4477  unexb  4507  unfiexmid  7041  unfidisj  7045  hashunlem  10986  bdunexb  16055  bj-unexg  16056
  Copyright terms: Public domain W3C validator