ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2 Unicode version

Theorem uneq2 3307
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
uneq2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )

Proof of Theorem uneq2
StepHypRef Expression
1 uneq1 3306 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
2 uncom 3303 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3303 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157
This theorem is referenced by:  uneq12  3308  uneq2i  3310  uneq2d  3313  uneqin  3410  disjssun  3510  uniprg  3850  sucprc  4443  unexb  4473  unfiexmid  6974  unfidisj  6978  hashunlem  10875  bdunexb  15412  bj-unexg  15413
  Copyright terms: Public domain W3C validator