ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2 Unicode version

Theorem uneq2 3352
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
uneq2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )

Proof of Theorem uneq2
StepHypRef Expression
1 uneq1 3351 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
2 uncom 3348 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3348 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33eqtr4g 2287 1  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201
This theorem is referenced by:  uneq12  3353  uneq2i  3355  uneq2d  3358  uneqin  3455  disjssun  3555  uniprg  3903  sucprc  4503  unexb  4533  unfiexmid  7080  unfidisj  7084  hashunlem  11026  bdunexb  16283  bj-unexg  16284
  Copyright terms: Public domain W3C validator