Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > drsb1 | Unicode version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
drsb1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 1700 | . . . . 5 | |
2 | 1 | sps 1525 | . . . 4 |
3 | 2 | imbi1d 230 | . . 3 |
4 | 2 | anbi1d 461 | . . . 4 |
5 | 4 | drex1 1786 | . . 3 |
6 | 3, 5 | anbi12d 465 | . 2 |
7 | df-sb 1751 | . 2 | |
8 | df-sb 1751 | . 2 | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbequi 1827 nfsbxy 1930 nfsbxyt 1931 sbcomxyyz 1960 iotaeq 5161 |
Copyright terms: Public domain | W3C validator |