ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb1 Unicode version

Theorem drsb1 1845
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1758 . . . . 5  |-  ( x  =  y  ->  (
x  =  z  <->  y  =  z ) )
21sps 1583 . . . 4  |-  ( A. x  x  =  y  ->  ( x  =  z  <-> 
y  =  z ) )
32imbi1d 231 . . 3  |-  ( A. x  x  =  y  ->  ( ( x  =  z  ->  ph )  <->  ( y  =  z  ->  ph )
) )
42anbi1d 465 . . . 4  |-  ( A. x  x  =  y  ->  ( ( x  =  z  /\  ph )  <->  ( y  =  z  /\  ph ) ) )
54drex1 1844 . . 3  |-  ( A. x  x  =  y  ->  ( E. x ( x  =  z  /\  ph )  <->  E. y ( y  =  z  /\  ph ) ) )
63, 5anbi12d 473 . 2  |-  ( A. x  x  =  y  ->  ( ( ( x  =  z  ->  ph )  /\  E. x ( x  =  z  /\  ph ) )  <->  ( (
y  =  z  ->  ph )  /\  E. y
( y  =  z  /\  ph ) ) ) )
7 df-sb 1809 . 2  |-  ( [ z  /  x ] ph 
<->  ( ( x  =  z  ->  ph )  /\  E. x ( x  =  z  /\  ph )
) )
8 df-sb 1809 . 2  |-  ( [ z  /  y ]
ph 
<->  ( ( y  =  z  ->  ph )  /\  E. y ( y  =  z  /\  ph )
) )
96, 7, 83bitr4g 223 1  |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393   E.wex 1538   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  sbequi  1885  nfsbxy  1993  nfsbxyt  1994  sbcomxyyz  2023  iotaeq  5287
  Copyright terms: Public domain W3C validator