| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > drsb1 | Unicode version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| drsb1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equequ1 1726 | 
. . . . 5
 | |
| 2 | 1 | sps 1551 | 
. . . 4
 | 
| 3 | 2 | imbi1d 231 | 
. . 3
 | 
| 4 | 2 | anbi1d 465 | 
. . . 4
 | 
| 5 | 4 | drex1 1812 | 
. . 3
 | 
| 6 | 3, 5 | anbi12d 473 | 
. 2
 | 
| 7 | df-sb 1777 | 
. 2
 | |
| 8 | df-sb 1777 | 
. 2
 | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: sbequi 1853 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 iotaeq 5227 | 
| Copyright terms: Public domain | W3C validator |