Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotaeq | Unicode version |
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotaeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 1792 | . . . . . . 7 | |
2 | df-clab 2157 | . . . . . . 7 | |
3 | df-clab 2157 | . . . . . . 7 | |
4 | 1, 2, 3 | 3bitr4g 222 | . . . . . 6 |
5 | 4 | eqrdv 2168 | . . . . 5 |
6 | 5 | eqeq1d 2179 | . . . 4 |
7 | 6 | abbidv 2288 | . . 3 |
8 | 7 | unieqd 3807 | . 2 |
9 | df-iota 5160 | . 2 | |
10 | df-iota 5160 | . 2 | |
11 | 8, 9, 10 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wsb 1755 wcel 2141 cab 2156 csn 3583 cuni 3796 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 df-iota 5160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |