| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > drsb1 | GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| drsb1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ1 1726 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 2 | 1 | sps 1551 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 3 | 2 | imbi1d 231 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → 𝜑))) |
| 4 | 2 | anbi1d 465 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 ∧ 𝜑) ↔ (𝑦 = 𝑧 ∧ 𝜑))) |
| 5 | 4 | drex1 1812 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) |
| 6 | 3, 5 | anbi12d 473 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)))) |
| 7 | df-sb 1777 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
| 8 | df-sb 1777 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbequi 1853 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 iotaeq 5227 |
| Copyright terms: Public domain | W3C validator |