![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > drsb1 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
drsb1 | ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 1712 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
2 | 1 | sps 1537 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
3 | 2 | imbi1d 231 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → 𝜑))) |
4 | 2 | anbi1d 465 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧 ∧ 𝜑) ↔ (𝑦 = 𝑧 ∧ 𝜑))) |
5 | 4 | drex1 1798 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) |
6 | 3, 5 | anbi12d 473 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑)))) |
7 | df-sb 1763 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
8 | df-sb 1763 | . 2 ⊢ ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧 → 𝜑) ∧ ∃𝑦(𝑦 = 𝑧 ∧ 𝜑))) | |
9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃wex 1492 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: sbequi 1839 nfsbxy 1942 nfsbxyt 1943 sbcomxyyz 1972 iotaeq 5188 |
Copyright terms: Public domain | W3C validator |