Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb1 GIF version

Theorem drsb1 1753
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1671 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
21sps 1500 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
32imbi1d 230 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
42anbi1d 458 . . . 4 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
54drex1 1752 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑦(𝑦 = 𝑧𝜑)))
63, 5anbi12d 462 . 2 (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)) ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑))))
7 df-sb 1719 . 2 ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
8 df-sb 1719 . 2 ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑)))
96, 7, 83bitr4g 222 1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1312  ∃wex 1451  [wsb 1718 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497 This theorem depends on definitions:  df-bi 116  df-sb 1719 This theorem is referenced by:  sbequi  1793  nfsbxy  1893  nfsbxyt  1894  sbcomxyyz  1921  iotaeq  5064
 Copyright terms: Public domain W3C validator