ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb1 GIF version

Theorem drsb1 1813
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1726 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
21sps 1551 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
32imbi1d 231 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
42anbi1d 465 . . . 4 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
54drex1 1812 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑦(𝑦 = 𝑧𝜑)))
63, 5anbi12d 473 . 2 (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)) ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑))))
7 df-sb 1777 . 2 ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
8 df-sb 1777 . 2 ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑)))
96, 7, 83bitr4g 223 1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1506  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-sb 1777
This theorem is referenced by:  sbequi  1853  nfsbxy  1961  nfsbxyt  1962  sbcomxyyz  1991  iotaeq  5227
  Copyright terms: Public domain W3C validator