ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g GIF version

Theorem elab3g 2767
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2762. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3g ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2229 . 2 𝑥𝐴
2 nfv 1467 . 2 𝑥𝜓
3 elab3g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elab3gf 2766 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1290  wcel 1439  {cab 2075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622
This theorem is referenced by:  elab3  2768  elssabg  3990  elrnmptg  4700  elreimasng  4811  fvelrnb  5365  elmapg  6432
  Copyright terms: Public domain W3C validator