ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g GIF version

Theorem elab3g 2881
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2876. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3g ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2312 . 2 𝑥𝐴
2 nfv 1521 . 2 𝑥𝜓
3 elab3g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elab3gf 2880 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  elab3  2882  elssabg  4134  elrnmptg  4863  elreimasng  4977  fvelrnb  5544  elmapg  6639
  Copyright terms: Public domain W3C validator