ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g GIF version

Theorem elab3g 2875
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2870. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3g ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2306 . 2 𝑥𝐴
2 nfv 1515 . 2 𝑥𝜓
3 elab3g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elab3gf 2874 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wcel 2135  {cab 2150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2726
This theorem is referenced by:  elab3  2876  elssabg  4124  elrnmptg  4853  elreimasng  4967  fvelrnb  5531  elmapg  6621
  Copyright terms: Public domain W3C validator