ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3 Unicode version

Theorem elab3 2916
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
Hypotheses
Ref Expression
elab3.1  |-  ( ps 
->  A  e.  _V )
elab3.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elab3  |-  ( A  e.  { x  | 
ph }  <->  ps )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab3
StepHypRef Expression
1 elab3.1 . 2  |-  ( ps 
->  A  e.  _V )
2 elab3.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32elab3g 2915 . 2  |-  ( ( ps  ->  A  e.  _V )  ->  ( A  e.  { x  | 
ph }  <->  ps )
)
41, 3ax-mp 5 1  |-  ( A  e.  { x  | 
ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elrnmpo  6036  isfi  6820  addnqprlemfl  7624  addnqprlemfu  7625  mulnqprlemfl  7640  mulnqprlemfu  7641  iswrd  10922  4sqlem2  12534  istps  14244  elply  14946
  Copyright terms: Public domain W3C validator