| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version | ||
| Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| fvelrnb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 2481 | 
. . . 4
 | |
| 2 | 19.41v 1917 | 
. . . . 5
 | |
| 3 | simpl 109 | 
. . . . . . . . . 10
 | |
| 4 | 3 | anim1i 340 | 
. . . . . . . . 9
 | 
| 5 | 4 | ancomd 267 | 
. . . . . . . 8
 | 
| 6 | funfvex 5575 | 
. . . . . . . . 9
 | |
| 7 | 6 | funfni 5358 | 
. . . . . . . 8
 | 
| 8 | 5, 7 | syl 14 | 
. . . . . . 7
 | 
| 9 | simpr 110 | 
. . . . . . . . 9
 | |
| 10 | 9 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 11 | 10 | adantr 276 | 
. . . . . . 7
 | 
| 12 | 8, 11 | mpbid 147 | 
. . . . . 6
 | 
| 13 | 12 | exlimiv 1612 | 
. . . . 5
 | 
| 14 | 2, 13 | sylbir 135 | 
. . . 4
 | 
| 15 | 1, 14 | sylanb 284 | 
. . 3
 | 
| 16 | 15 | expcom 116 | 
. 2
 | 
| 17 | fnrnfv 5607 | 
. . . 4
 | |
| 18 | 17 | eleq2d 2266 | 
. . 3
 | 
| 19 | eqeq1 2203 | 
. . . . . 6
 | |
| 20 | eqcom 2198 | 
. . . . . 6
 | |
| 21 | 19, 20 | bitrdi 196 | 
. . . . 5
 | 
| 22 | 21 | rexbidv 2498 | 
. . . 4
 | 
| 23 | 22 | elab3g 2915 | 
. . 3
 | 
| 24 | 18, 23 | sylan9bbr 463 | 
. 2
 | 
| 25 | 16, 24 | mpancom 422 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: foelcdmi 5613 chfnrn 5673 rexrn 5699 ralrn 5700 elrnrexdmb 5702 ffnfv 5720 fconstfvm 5780 elunirn 5813 isoini 5865 canth 5875 reldm 6244 ordiso2 7101 eldju 7134 ctssdc 7179 uzn0 9617 frec2uzrand 10497 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 uzin2 11152 imasgrp2 13240 imasrng 13512 imasring 13620 reeff1o 15009 | 
| Copyright terms: Public domain | W3C validator |