| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version | ||
| Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| fvelrnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 |
. . . 4
| |
| 2 | 19.41v 1926 |
. . . . 5
| |
| 3 | simpl 109 |
. . . . . . . . . 10
| |
| 4 | 3 | anim1i 340 |
. . . . . . . . 9
|
| 5 | 4 | ancomd 267 |
. . . . . . . 8
|
| 6 | funfvex 5595 |
. . . . . . . . 9
| |
| 7 | 6 | funfni 5377 |
. . . . . . . 8
|
| 8 | 5, 7 | syl 14 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2274 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 8, 11 | mpbid 147 |
. . . . . 6
|
| 13 | 12 | exlimiv 1621 |
. . . . 5
|
| 14 | 2, 13 | sylbir 135 |
. . . 4
|
| 15 | 1, 14 | sylanb 284 |
. . 3
|
| 16 | 15 | expcom 116 |
. 2
|
| 17 | fnrnfv 5627 |
. . . 4
| |
| 18 | 17 | eleq2d 2275 |
. . 3
|
| 19 | eqeq1 2212 |
. . . . . 6
| |
| 20 | eqcom 2207 |
. . . . . 6
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . 5
|
| 22 | 21 | rexbidv 2507 |
. . . 4
|
| 23 | 22 | elab3g 2924 |
. . 3
|
| 24 | 18, 23 | sylan9bbr 463 |
. 2
|
| 25 | 16, 24 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: foelcdmi 5633 chfnrn 5693 rexrn 5719 ralrn 5720 elrnrexdmb 5722 ffnfv 5740 fconstfvm 5804 elunirn 5837 isoini 5889 canth 5899 reldm 6274 ordiso2 7139 eldju 7172 ctssdc 7217 uzn0 9666 frec2uzrand 10552 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 uzin2 11331 imasmnd2 13317 imasgrp2 13479 imasrng 13751 imasring 13859 reeff1o 15278 |
| Copyright terms: Public domain | W3C validator |