| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version | ||
| Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| fvelrnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 |
. . . 4
| |
| 2 | 19.41v 1917 |
. . . . 5
| |
| 3 | simpl 109 |
. . . . . . . . . 10
| |
| 4 | 3 | anim1i 340 |
. . . . . . . . 9
|
| 5 | 4 | ancomd 267 |
. . . . . . . 8
|
| 6 | funfvex 5578 |
. . . . . . . . 9
| |
| 7 | 6 | funfni 5361 |
. . . . . . . 8
|
| 8 | 5, 7 | syl 14 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2265 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 8, 11 | mpbid 147 |
. . . . . 6
|
| 13 | 12 | exlimiv 1612 |
. . . . 5
|
| 14 | 2, 13 | sylbir 135 |
. . . 4
|
| 15 | 1, 14 | sylanb 284 |
. . 3
|
| 16 | 15 | expcom 116 |
. 2
|
| 17 | fnrnfv 5610 |
. . . 4
| |
| 18 | 17 | eleq2d 2266 |
. . 3
|
| 19 | eqeq1 2203 |
. . . . . 6
| |
| 20 | eqcom 2198 |
. . . . . 6
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . 5
|
| 22 | 21 | rexbidv 2498 |
. . . 4
|
| 23 | 22 | elab3g 2915 |
. . 3
|
| 24 | 18, 23 | sylan9bbr 463 |
. 2
|
| 25 | 16, 24 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: foelcdmi 5616 chfnrn 5676 rexrn 5702 ralrn 5703 elrnrexdmb 5705 ffnfv 5723 fconstfvm 5783 elunirn 5816 isoini 5868 canth 5878 reldm 6253 ordiso2 7110 eldju 7143 ctssdc 7188 uzn0 9634 frec2uzrand 10514 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 uzin2 11169 imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 reeff1o 15093 |
| Copyright terms: Public domain | W3C validator |