Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version |
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
fvelrnb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . . . 4 | |
2 | 19.41v 1895 | . . . . 5 | |
3 | simpl 108 | . . . . . . . . . 10 | |
4 | 3 | anim1i 338 | . . . . . . . . 9 |
5 | 4 | ancomd 265 | . . . . . . . 8 |
6 | funfvex 5513 | . . . . . . . . 9 | |
7 | 6 | funfni 5298 | . . . . . . . 8 |
8 | 5, 7 | syl 14 | . . . . . . 7 |
9 | simpr 109 | . . . . . . . . 9 | |
10 | 9 | eleq1d 2239 | . . . . . . . 8 |
11 | 10 | adantr 274 | . . . . . . 7 |
12 | 8, 11 | mpbid 146 | . . . . . 6 |
13 | 12 | exlimiv 1591 | . . . . 5 |
14 | 2, 13 | sylbir 134 | . . . 4 |
15 | 1, 14 | sylanb 282 | . . 3 |
16 | 15 | expcom 115 | . 2 |
17 | fnrnfv 5543 | . . . 4 | |
18 | 17 | eleq2d 2240 | . . 3 |
19 | eqeq1 2177 | . . . . . 6 | |
20 | eqcom 2172 | . . . . . 6 | |
21 | 19, 20 | bitrdi 195 | . . . . 5 |
22 | 21 | rexbidv 2471 | . . . 4 |
23 | 22 | elab3g 2881 | . . 3 |
24 | 18, 23 | sylan9bbr 460 | . 2 |
25 | 16, 24 | mpancom 420 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cab 2156 wrex 2449 cvv 2730 crn 4612 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: chfnrn 5607 rexrn 5633 ralrn 5634 elrnrexdmb 5636 ffnfv 5654 fconstfvm 5714 elunirn 5745 isoini 5797 canth 5807 reldm 6165 ordiso2 7012 eldju 7045 ctssdc 7090 uzn0 9502 frec2uzrand 10361 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 uzin2 10951 reeff1o 13488 |
Copyright terms: Public domain | W3C validator |