Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version |
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
fvelrnb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . . . 4 | |
2 | 19.41v 1890 | . . . . 5 | |
3 | simpl 108 | . . . . . . . . . 10 | |
4 | 3 | anim1i 338 | . . . . . . . . 9 |
5 | 4 | ancomd 265 | . . . . . . . 8 |
6 | funfvex 5503 | . . . . . . . . 9 | |
7 | 6 | funfni 5288 | . . . . . . . 8 |
8 | 5, 7 | syl 14 | . . . . . . 7 |
9 | simpr 109 | . . . . . . . . 9 | |
10 | 9 | eleq1d 2235 | . . . . . . . 8 |
11 | 10 | adantr 274 | . . . . . . 7 |
12 | 8, 11 | mpbid 146 | . . . . . 6 |
13 | 12 | exlimiv 1586 | . . . . 5 |
14 | 2, 13 | sylbir 134 | . . . 4 |
15 | 1, 14 | sylanb 282 | . . 3 |
16 | 15 | expcom 115 | . 2 |
17 | fnrnfv 5533 | . . . 4 | |
18 | 17 | eleq2d 2236 | . . 3 |
19 | eqeq1 2172 | . . . . . 6 | |
20 | eqcom 2167 | . . . . . 6 | |
21 | 19, 20 | bitrdi 195 | . . . . 5 |
22 | 21 | rexbidv 2467 | . . . 4 |
23 | 22 | elab3g 2877 | . . 3 |
24 | 18, 23 | sylan9bbr 459 | . 2 |
25 | 16, 24 | mpancom 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 wrex 2445 cvv 2726 crn 4605 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: chfnrn 5596 rexrn 5622 ralrn 5623 elrnrexdmb 5625 ffnfv 5643 fconstfvm 5703 elunirn 5734 isoini 5786 canth 5796 reldm 6154 ordiso2 7000 eldju 7033 ctssdc 7078 uzn0 9481 frec2uzrand 10340 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 uzin2 10929 reeff1o 13334 |
Copyright terms: Public domain | W3C validator |