| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version | ||
| Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| fvelrnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 |
. . . 4
| |
| 2 | 19.41v 1926 |
. . . . 5
| |
| 3 | simpl 109 |
. . . . . . . . . 10
| |
| 4 | 3 | anim1i 340 |
. . . . . . . . 9
|
| 5 | 4 | ancomd 267 |
. . . . . . . 8
|
| 6 | funfvex 5593 |
. . . . . . . . 9
| |
| 7 | 6 | funfni 5376 |
. . . . . . . 8
|
| 8 | 5, 7 | syl 14 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2274 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 8, 11 | mpbid 147 |
. . . . . 6
|
| 13 | 12 | exlimiv 1621 |
. . . . 5
|
| 14 | 2, 13 | sylbir 135 |
. . . 4
|
| 15 | 1, 14 | sylanb 284 |
. . 3
|
| 16 | 15 | expcom 116 |
. 2
|
| 17 | fnrnfv 5625 |
. . . 4
| |
| 18 | 17 | eleq2d 2275 |
. . 3
|
| 19 | eqeq1 2212 |
. . . . . 6
| |
| 20 | eqcom 2207 |
. . . . . 6
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . 5
|
| 22 | 21 | rexbidv 2507 |
. . . 4
|
| 23 | 22 | elab3g 2924 |
. . 3
|
| 24 | 18, 23 | sylan9bbr 463 |
. 2
|
| 25 | 16, 24 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: foelcdmi 5631 chfnrn 5691 rexrn 5717 ralrn 5718 elrnrexdmb 5720 ffnfv 5738 fconstfvm 5802 elunirn 5835 isoini 5887 canth 5897 reldm 6272 ordiso2 7137 eldju 7170 ctssdc 7215 uzn0 9664 frec2uzrand 10550 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 uzin2 11298 imasmnd2 13284 imasgrp2 13446 imasrng 13718 imasring 13826 reeff1o 15245 |
| Copyright terms: Public domain | W3C validator |