| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvelrnb | Unicode version | ||
| Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| fvelrnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2492 |
. . . 4
| |
| 2 | 19.41v 1927 |
. . . . 5
| |
| 3 | simpl 109 |
. . . . . . . . . 10
| |
| 4 | 3 | anim1i 340 |
. . . . . . . . 9
|
| 5 | 4 | ancomd 267 |
. . . . . . . 8
|
| 6 | funfvex 5616 |
. . . . . . . . 9
| |
| 7 | 6 | funfni 5395 |
. . . . . . . 8
|
| 8 | 5, 7 | syl 14 |
. . . . . . 7
|
| 9 | simpr 110 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . . 8
|
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 8, 11 | mpbid 147 |
. . . . . 6
|
| 13 | 12 | exlimiv 1622 |
. . . . 5
|
| 14 | 2, 13 | sylbir 135 |
. . . 4
|
| 15 | 1, 14 | sylanb 284 |
. . 3
|
| 16 | 15 | expcom 116 |
. 2
|
| 17 | fnrnfv 5648 |
. . . 4
| |
| 18 | 17 | eleq2d 2277 |
. . 3
|
| 19 | eqeq1 2214 |
. . . . . 6
| |
| 20 | eqcom 2209 |
. . . . . 6
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . 5
|
| 22 | 21 | rexbidv 2509 |
. . . 4
|
| 23 | 22 | elab3g 2931 |
. . 3
|
| 24 | 18, 23 | sylan9bbr 463 |
. 2
|
| 25 | 16, 24 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: foelcdmi 5654 chfnrn 5714 rexrn 5740 ralrn 5741 elrnrexdmb 5743 ffnfv 5761 fconstfvm 5825 elunirn 5858 isoini 5910 canth 5920 reldm 6295 ordiso2 7163 eldju 7196 ctssdc 7241 uzn0 9699 frec2uzrand 10587 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 uzin2 11413 imasmnd2 13399 imasgrp2 13561 imasrng 13833 imasring 13941 reeff1o 15360 |
| Copyright terms: Public domain | W3C validator |