ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrnb Unicode version

Theorem fvelrnb 5605
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
fvelrnb  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fvelrnb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-rex 2478 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  B  <->  E. x
( x  e.  A  /\  ( F `  x
)  =  B ) )
2 19.41v 1914 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  <->  ( E. x ( x  e.  A  /\  ( F `
 x )  =  B )  /\  F  Fn  A ) )
3 simpl 109 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  ->  x  e.  A )
43anim1i 340 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( x  e.  A  /\  F  Fn  A ) )
54ancomd 267 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( F  Fn  A  /\  x  e.  A ) )
6 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
76funfni 5355 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
85, 7syl 14 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( F `  x )  e.  _V )
9 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  -> 
( F `  x
)  =  B )
109eleq1d 2262 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  -> 
( ( F `  x )  e.  _V  <->  B  e.  _V ) )
1110adantr 276 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( ( F `  x )  e.  _V  <->  B  e.  _V ) )
128, 11mpbid 147 . . . . . 6  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  B  e.  _V )
1312exlimiv 1609 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  ->  B  e.  _V )
142, 13sylbir 135 . . . 4  |-  ( ( E. x ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  ->  B  e.  _V )
151, 14sylanb 284 . . 3  |-  ( ( E. x  e.  A  ( F `  x )  =  B  /\  F  Fn  A )  ->  B  e.  _V )
1615expcom 116 . 2  |-  ( F  Fn  A  ->  ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V ) )
17 fnrnfv 5604 . . . 4  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
1817eleq2d 2263 . . 3  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  B  e.  { y  |  E. x  e.  A  y  =  ( F `  x ) } ) )
19 eqeq1 2200 . . . . . 6  |-  ( y  =  B  ->  (
y  =  ( F `
 x )  <->  B  =  ( F `  x ) ) )
20 eqcom 2195 . . . . . 6  |-  ( B  =  ( F `  x )  <->  ( F `  x )  =  B )
2119, 20bitrdi 196 . . . . 5  |-  ( y  =  B  ->  (
y  =  ( F `
 x )  <->  ( F `  x )  =  B ) )
2221rexbidv 2495 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  ( F `  x )  =  B ) )
2322elab3g 2912 . . 3  |-  ( ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V )  ->  ( B  e.  { y  |  E. x  e.  A  y  =  ( F `  x ) }  <->  E. x  e.  A  ( F `  x )  =  B ) )
2418, 23sylan9bbr 463 . 2  |-  ( ( ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V )  /\  F  Fn  A
)  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
2516, 24mpancom 422 1  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   ran crn 4661    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  foelcdmi  5610  chfnrn  5670  rexrn  5696  ralrn  5697  elrnrexdmb  5699  ffnfv  5717  fconstfvm  5777  elunirn  5810  isoini  5862  canth  5872  reldm  6241  ordiso2  7096  eldju  7129  ctssdc  7174  uzn0  9611  frec2uzrand  10479  frecuzrdgtcl  10486  frecuzrdgfunlem  10493  uzin2  11134  imasgrp2  13183  imasrng  13455  imasring  13563  reeff1o  14949
  Copyright terms: Public domain W3C validator