ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg Unicode version

Theorem elrnmptg 4838
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmptg  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmptg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
21rnmpt 4834 . . 3  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
32eleq2i 2224 . 2  |-  ( C  e.  ran  F  <->  C  e.  { y  |  E. x  e.  A  y  =  B } )
4 r19.29 2594 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  E. x  e.  A  ( B  e.  V  /\  C  =  B ) )
5 eleq1 2220 . . . . . . . 8  |-  ( C  =  B  ->  ( C  e.  V  <->  B  e.  V ) )
65biimparc 297 . . . . . . 7  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  V )
7 elex 2723 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
98rexlimivw 2570 . . . . 5  |-  ( E. x  e.  A  ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
104, 9syl 14 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  C  e.  _V )
1110ex 114 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( E. x  e.  A  C  =  B  ->  C  e. 
_V ) )
12 eqeq1 2164 . . . . 5  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
1312rexbidv 2458 . . . 4  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
1413elab3g 2863 . . 3  |-  ( ( E. x  e.  A  C  =  B  ->  C  e.  _V )  -> 
( C  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B )
)
1511, 14syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  { y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B ) )
163, 15syl5bb 191 1  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   E.wrex 2436   _Vcvv 2712    |-> cmpt 4025   ran crn 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-cnv 4594  df-dm 4596  df-rn 4597
This theorem is referenced by:  elrnmpti  4839  fliftel  5743
  Copyright terms: Public domain W3C validator