ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg Unicode version

Theorem elrnmptg 4918
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmptg  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmptg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
21rnmpt 4914 . . 3  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
32eleq2i 2263 . 2  |-  ( C  e.  ran  F  <->  C  e.  { y  |  E. x  e.  A  y  =  B } )
4 r19.29 2634 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  E. x  e.  A  ( B  e.  V  /\  C  =  B ) )
5 eleq1 2259 . . . . . . . 8  |-  ( C  =  B  ->  ( C  e.  V  <->  B  e.  V ) )
65biimparc 299 . . . . . . 7  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  V )
7 elex 2774 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
98rexlimivw 2610 . . . . 5  |-  ( E. x  e.  A  ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
104, 9syl 14 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  C  e.  _V )
1110ex 115 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( E. x  e.  A  C  =  B  ->  C  e. 
_V ) )
12 eqeq1 2203 . . . . 5  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
1312rexbidv 2498 . . . 4  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
1413elab3g 2915 . . 3  |-  ( ( E. x  e.  A  C  =  B  ->  C  e.  _V )  -> 
( C  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B )
)
1511, 14syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  { y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B ) )
163, 15bitrid 192 1  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    |-> cmpt 4094   ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  elrnmpti  4919  fliftel  5840  2sqlem1  15355
  Copyright terms: Public domain W3C validator