ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptg Unicode version

Theorem elrnmptg 4786
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmptg  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmptg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
21rnmpt 4782 . . 3  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
32eleq2i 2204 . 2  |-  ( C  e.  ran  F  <->  C  e.  { y  |  E. x  e.  A  y  =  B } )
4 r19.29 2567 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  E. x  e.  A  ( B  e.  V  /\  C  =  B ) )
5 eleq1 2200 . . . . . . . 8  |-  ( C  =  B  ->  ( C  e.  V  <->  B  e.  V ) )
65biimparc 297 . . . . . . 7  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  V )
7 elex 2692 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
98rexlimivw 2543 . . . . 5  |-  ( E. x  e.  A  ( B  e.  V  /\  C  =  B )  ->  C  e.  _V )
104, 9syl 14 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  E. x  e.  A  C  =  B )  ->  C  e.  _V )
1110ex 114 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( E. x  e.  A  C  =  B  ->  C  e. 
_V ) )
12 eqeq1 2144 . . . . 5  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
1312rexbidv 2436 . . . 4  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
1413elab3g 2830 . . 3  |-  ( ( E. x  e.  A  C  =  B  ->  C  e.  _V )  -> 
( C  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B )
)
1511, 14syl 14 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  { y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  C  =  B ) )
163, 15syl5bb 191 1  |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   _Vcvv 2681    |-> cmpt 3984   ran crn 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-mpt 3986  df-cnv 4542  df-dm 4544  df-rn 4545
This theorem is referenced by:  elrnmpti  4787  fliftel  5687
  Copyright terms: Public domain W3C validator