Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemhom | Unicode version |
Description: Lemma for ennnfone 12373. The sequences in increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | DECID |
ennnfonelemh.f | |
ennnfonelemh.ne | |
ennnfonelemh.g | |
ennnfonelemh.n | frec |
ennnfonelemh.j | |
ennnfonelemh.h | |
ennnfonelemhom.m |
Ref | Expression |
---|---|
ennnfonelemhom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemhom.m | . 2 | |
2 | eleq1 2233 | . . . . 5 | |
3 | 2 | rexbidv 2471 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | eleq1 2233 | . . . . 5 | |
6 | 5 | rexbidv 2471 | . . . 4 |
7 | 6 | imbi2d 229 | . . 3 |
8 | eleq1 2233 | . . . . 5 | |
9 | 8 | rexbidv 2471 | . . . 4 |
10 | 9 | imbi2d 229 | . . 3 |
11 | eleq1 2233 | . . . . 5 | |
12 | 11 | rexbidv 2471 | . . . 4 |
13 | 12 | imbi2d 229 | . . 3 |
14 | 1nn0 9144 | . . . 4 | |
15 | 0ex 4114 | . . . . . 6 | |
16 | 15 | snid 3612 | . . . . 5 |
17 | ennnfonelemh.dceq | . . . . . . . 8 DECID | |
18 | ennnfonelemh.f | . . . . . . . 8 | |
19 | ennnfonelemh.ne | . . . . . . . 8 | |
20 | ennnfonelemh.g | . . . . . . . 8 | |
21 | ennnfonelemh.n | . . . . . . . 8 frec | |
22 | ennnfonelemh.j | . . . . . . . 8 | |
23 | ennnfonelemh.h | . . . . . . . 8 | |
24 | 17, 18, 19, 20, 21, 22, 23 | ennnfonelem1 12355 | . . . . . . 7 |
25 | 24 | dmeqd 4811 | . . . . . 6 |
26 | peano1 4576 | . . . . . . . 8 | |
27 | fof 5418 | . . . . . . . . . 10 | |
28 | 18, 27 | syl 14 | . . . . . . . . 9 |
29 | 26 | a1i 9 | . . . . . . . . 9 |
30 | 28, 29 | ffvelrnd 5630 | . . . . . . . 8 |
31 | fnsng 5243 | . . . . . . . 8 | |
32 | 26, 30, 31 | sylancr 412 | . . . . . . 7 |
33 | fndm 5295 | . . . . . . 7 | |
34 | 32, 33 | syl 14 | . . . . . 6 |
35 | 25, 34 | eqtrd 2203 | . . . . 5 |
36 | 16, 35 | eleqtrrid 2260 | . . . 4 |
37 | fveq2 5494 | . . . . . . 7 | |
38 | 37 | dmeqd 4811 | . . . . . 6 |
39 | 38 | eleq2d 2240 | . . . . 5 |
40 | 39 | rspcev 2834 | . . . 4 |
41 | 14, 36, 40 | sylancr 412 | . . 3 |
42 | 17 | ad3antrrr 489 | . . . . . . . . 9 DECID |
43 | 18 | ad3antrrr 489 | . . . . . . . . 9 |
44 | 19 | ad3antrrr 489 | . . . . . . . . . 10 |
45 | fveq2 5494 | . . . . . . . . . . . . . 14 | |
46 | 45 | neeq1d 2358 | . . . . . . . . . . . . 13 |
47 | 46 | ralbidv 2470 | . . . . . . . . . . . 12 |
48 | 47 | cbvrexv 2697 | . . . . . . . . . . 11 |
49 | 48 | ralbii 2476 | . . . . . . . . . 10 |
50 | 44, 49 | sylib 121 | . . . . . . . . 9 |
51 | simplr 525 | . . . . . . . . 9 | |
52 | 42, 43, 50, 20, 21, 22, 23, 51 | ennnfonelemex 12362 | . . . . . . . 8 |
53 | 42 | ad2antrr 485 | . . . . . . . . . . . . . 14 DECID |
54 | 43 | ad2antrr 485 | . . . . . . . . . . . . . 14 |
55 | 44 | ad2antrr 485 | . . . . . . . . . . . . . 14 |
56 | simplr 525 | . . . . . . . . . . . . . 14 | |
57 | 53, 54, 55, 20, 21, 22, 23, 56 | ennnfonelemom 12356 | . . . . . . . . . . . . 13 |
58 | nnord 4594 | . . . . . . . . . . . . 13 | |
59 | 57, 58 | syl 14 | . . . . . . . . . . . 12 |
60 | simpr 109 | . . . . . . . . . . . 12 | |
61 | ordsucss 4486 | . . . . . . . . . . . 12 | |
62 | 59, 60, 61 | sylc 62 | . . . . . . . . . . 11 |
63 | simpr 109 | . . . . . . . . . . . . 13 | |
64 | 42, 43, 44, 20, 21, 22, 23, 51 | ennnfonelemom 12356 | . . . . . . . . . . . . . 14 |
65 | nnsucelsuc 6468 | . . . . . . . . . . . . . 14 | |
66 | 64, 65 | syl 14 | . . . . . . . . . . . . 13 |
67 | 63, 66 | mpbid 146 | . . . . . . . . . . . 12 |
68 | 67 | ad2antrr 485 | . . . . . . . . . . 11 |
69 | 62, 68 | sseldd 3148 | . . . . . . . . . 10 |
70 | 69 | ex 114 | . . . . . . . . 9 |
71 | 70 | reximdva 2572 | . . . . . . . 8 |
72 | 52, 71 | mpd 13 | . . . . . . 7 |
73 | 72 | rexlimdva2 2590 | . . . . . 6 |
74 | fveq2 5494 | . . . . . . . . 9 | |
75 | 74 | dmeqd 4811 | . . . . . . . 8 |
76 | 75 | eleq2d 2240 | . . . . . . 7 |
77 | 76 | cbvrexv 2697 | . . . . . 6 |
78 | 73, 77 | syl6ibr 161 | . . . . 5 |
79 | 78 | expcom 115 | . . . 4 |
80 | 79 | a2d 26 | . . 3 |
81 | 4, 7, 10, 13, 41, 80 | finds 4582 | . 2 |
82 | 1, 81 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 wral 2448 wrex 2449 cun 3119 wss 3121 c0 3414 cif 3525 csn 3581 cop 3584 cmpt 4048 word 4345 csuc 4348 com 4572 ccnv 4608 cdm 4609 cima 4612 wfn 5191 wf 5192 wfo 5194 cfv 5196 (class class class)co 5851 cmpo 5853 freccfrec 6367 cpm 6625 cc0 7767 c1 7768 caddc 7770 cmin 8083 cn0 9128 cz 9205 cseq 10394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pm 6627 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-seqfrec 10395 |
This theorem is referenced by: ennnfonelemdm 12368 |
Copyright terms: Public domain | W3C validator |